

Learning to Remember: Exploring Multimodal Memory Mechanisms in Long Video Understanding

汇报人：李文卓

01

Introduction

— Why Long Video Understanding is Hard?

02

Problem Definition

— What Does “Learning to Remember” Mean?

03

Architectures

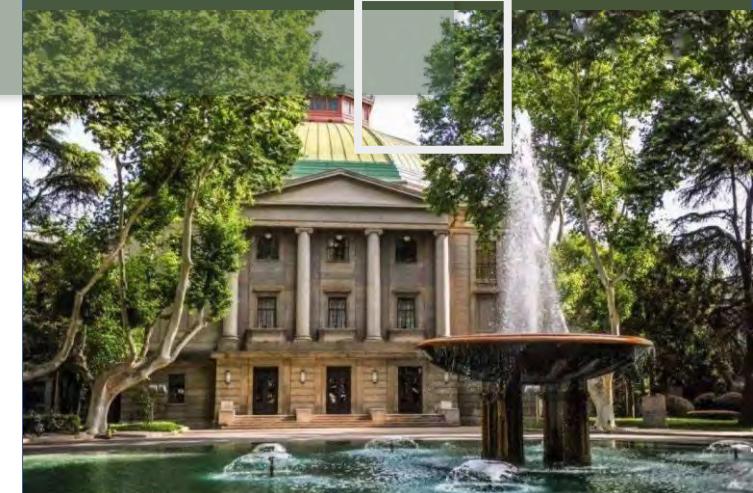
— Representative Multimodal Memory Designs

04

Frontier Field Integration

— Application in VLA

CONTENTS



東南大學
SOUTHEAST UNIVERSITY

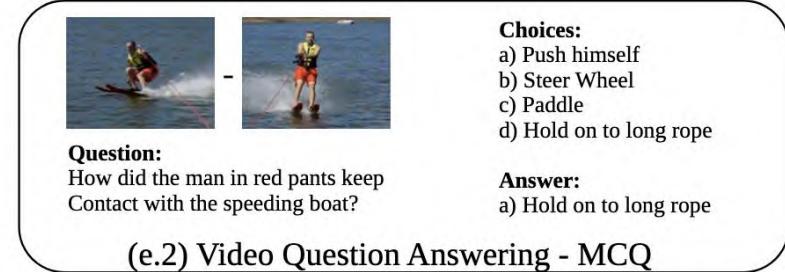
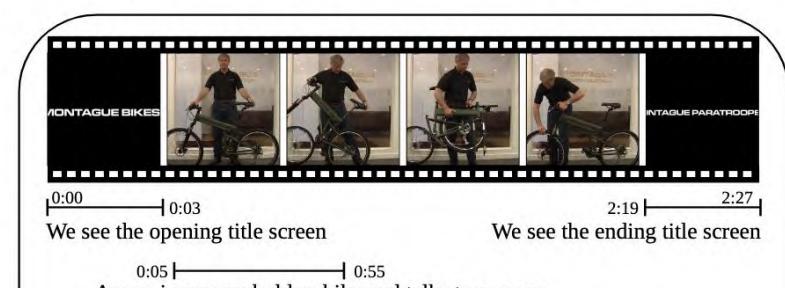
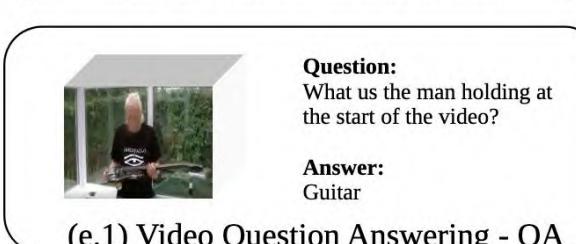
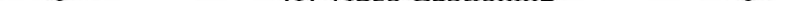
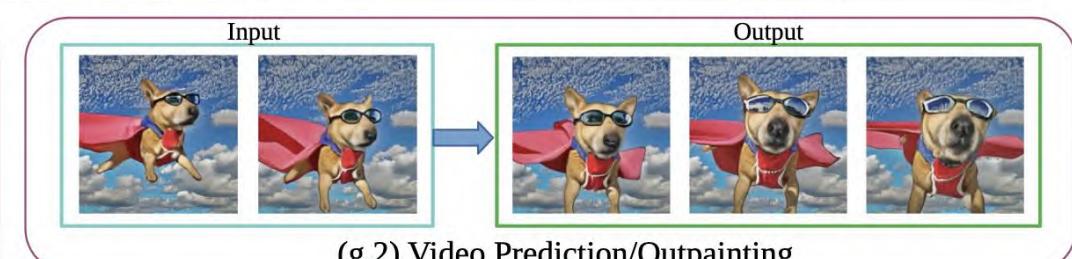
PART ONE

Introduction — Why Long Video Understanding is Hard?

01

Introduction

Video Understanding: Action Recognition, Event Detection, **Video Question Answering**, Video Summarization etc.



Introduction

Short Video Understanding: eg. MSVD-QA

Q: what is a man with long hair and a beard is playing ?

A: guitar

Q: what are two people doing?

A: dance

Q: what is a kid doing stunts on?

A: motorcycle

Q: what is a dog doing?

A: swim

Long Video Understanding: eg. Video-MME

Video-MME

On what date did the individual in the video leave a place that Simon thought was very important to him?

A. May 31, 2022. B. June 9, 2021. C. May 9, 2021. D. June 31, 2021.

The date of **Day 1** is May 31, 2021.
[in Frames]

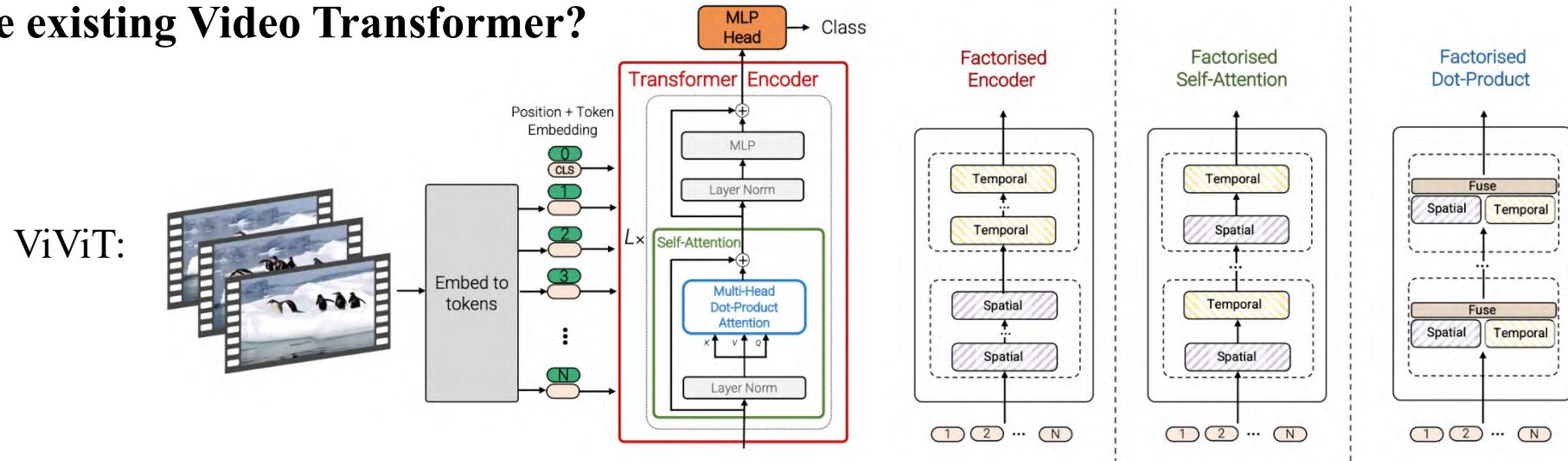
Simon is the camera man.
[in Frames]

Yosemite National Park did mean a lot more to Simon. [in Subs/Audio]

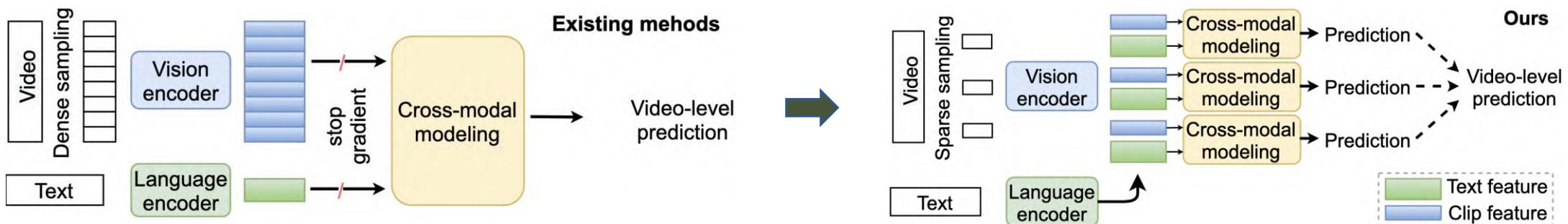
Depart Yosemite on **Day 10**.
[in Frames]

Introduction

Can we utilize the existing Video Transformer?



- Simply use it: → Self-attention all tokens $O(n^2)$, computationally and memory Intolerant
- Sample: Extracting keyframes or key clip from long videos → Inevitable information loss



- Hierarchical structure: model locally, then aggregate globally. → Tradeoff: Information retention VS Complexity

Introduction

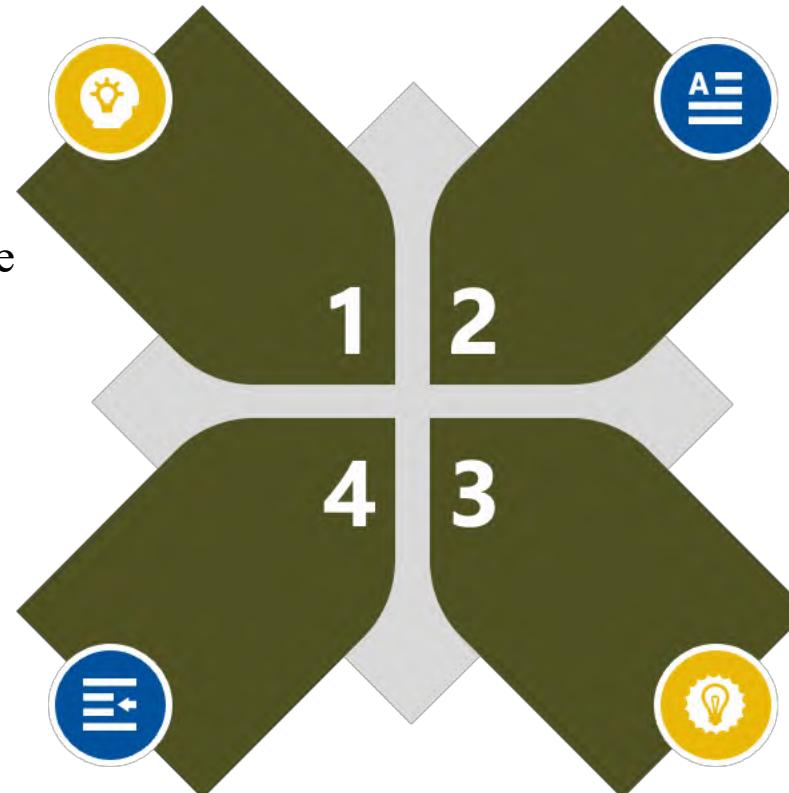
The difficulties in understanding long videos

Modeling long temporal dependencies is difficult

- several minutes or even hours
- traditional Transformer or RNN are difficult to directly capture such long cross-segment dependencies.

Information redundancy and semantic sparsity

- large number of frames lacking effective information and key events being sparsely distributed
- core challenge: how to filter and focus on important segments.



Remember longer and more accurately

Complex multimodal information fusion

- Video semantics span multiple modalities (vision scenes, character dialogue, audio cues)
- Required **cross-modal alignment and fusion capabilities**.

Event-level understanding and Computational efficiency

- Event-level action, causal, and intent reasoning required
- Global modeling over tens of thousands of frames is computationally expensive which limits the direct use of global attention methods.

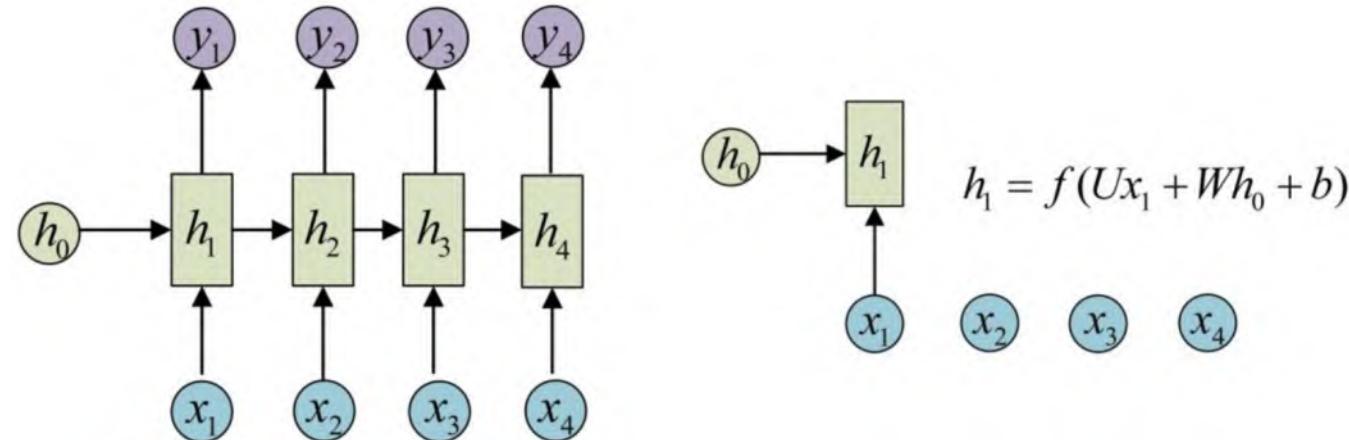
PART TWO

Problem Definition — What Does “Learning to Remember” Mean?

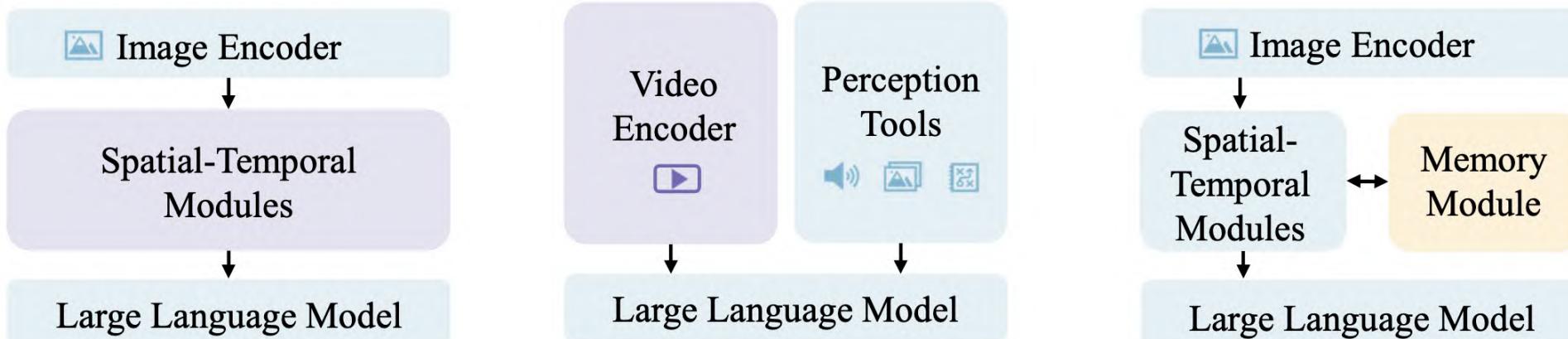
02

Problem Definition

Internal memory eg. RNN hidden states, Transformer cache: Implicitly maintain state



External memory eg. Memory Bank, Key-Value Memory: Explicitly store, update, and retrieve features



(a) Video MLLMs with Spatial-Temporal Modules

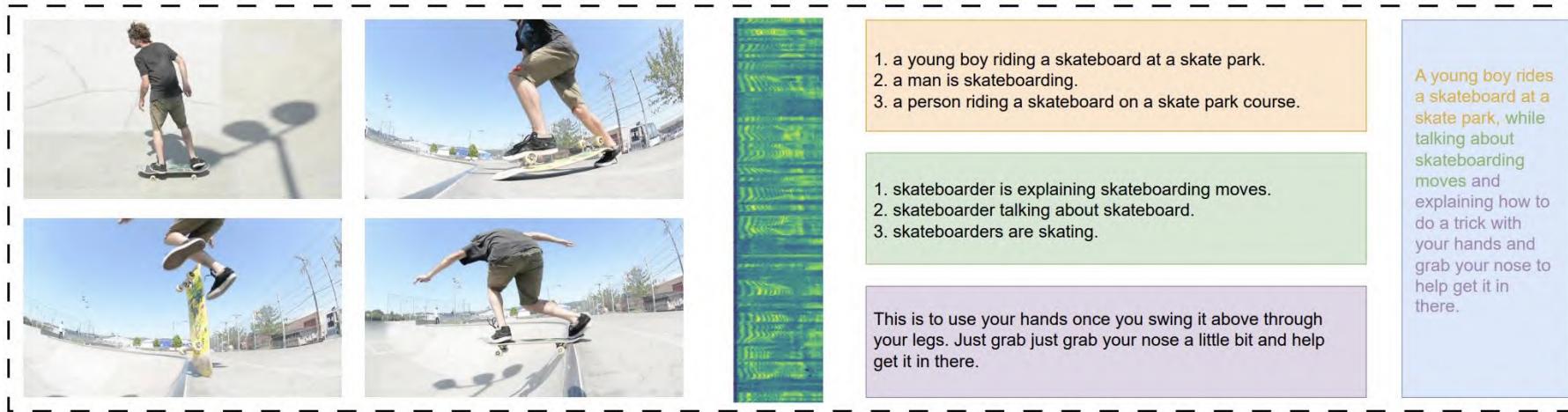
(b) Video MLLMs with Perception Tools

(c) Our Approach for Long Video Understanding

Problem Definition

Key points of memory mechanism

Inputs: Long video sequence + multimodal signal (frames, audio, subtitles)



Goal: Learn the most useful information summary within a limited context window

The model needs to have:

- Selective encoding (哪些片段值得记?)
- Efficient storage (如何组织记忆?)
- Dynamic retrieval (如何在问答/推理中召回?)

Problem Definition

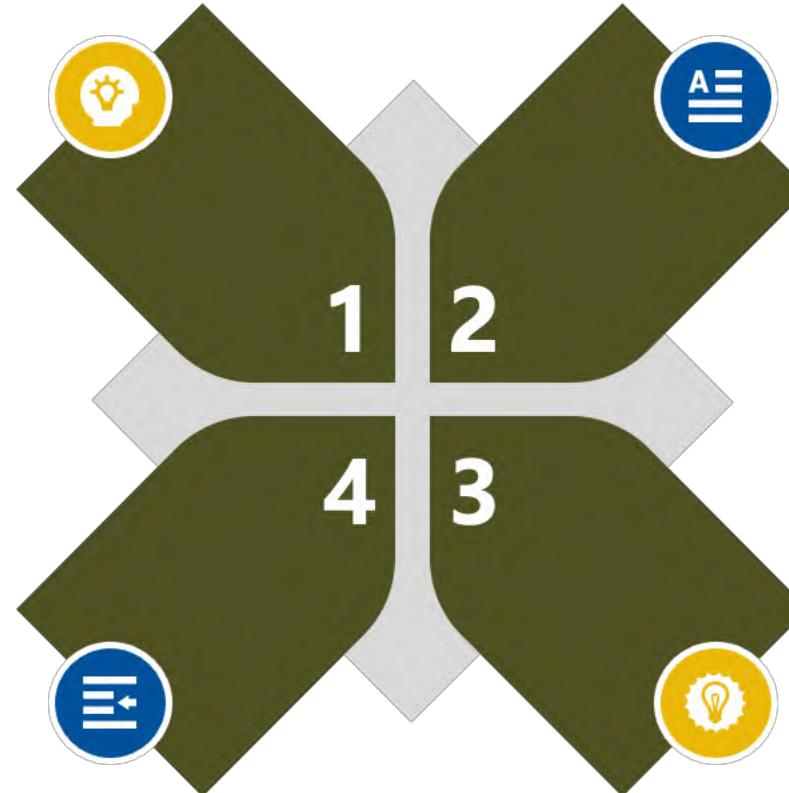
Role of Memory Mechanisms in Long Videos

Short-term retention & context continuity:

- Preserves key information over seconds to minutes, maintaining semantic coherence.
- Avoid Catastrophic forgetting over time.

Redundancy filtering & key event selection

- Selectively stores key events
- Reducing computation on irrelevant segments.
- Improve efficiency and robustness



Long-term integration & global reasoning

- Integrates events across long time spans to capture global narrative and causal structure.
- Helping the model capture the global narrative structure and causal relationships

Cross-modal alignment & semantic fusion

- Serves as a shared space to align and fuse visual, textual, and audio cues at the event level.
- Facilitate the model's multimodal understanding at the event level.

Architectures — Representative Multimodal Memory Designs

PART THREE

03

東南大學
SOUTHEAST UNIVERSITY

PART THREE

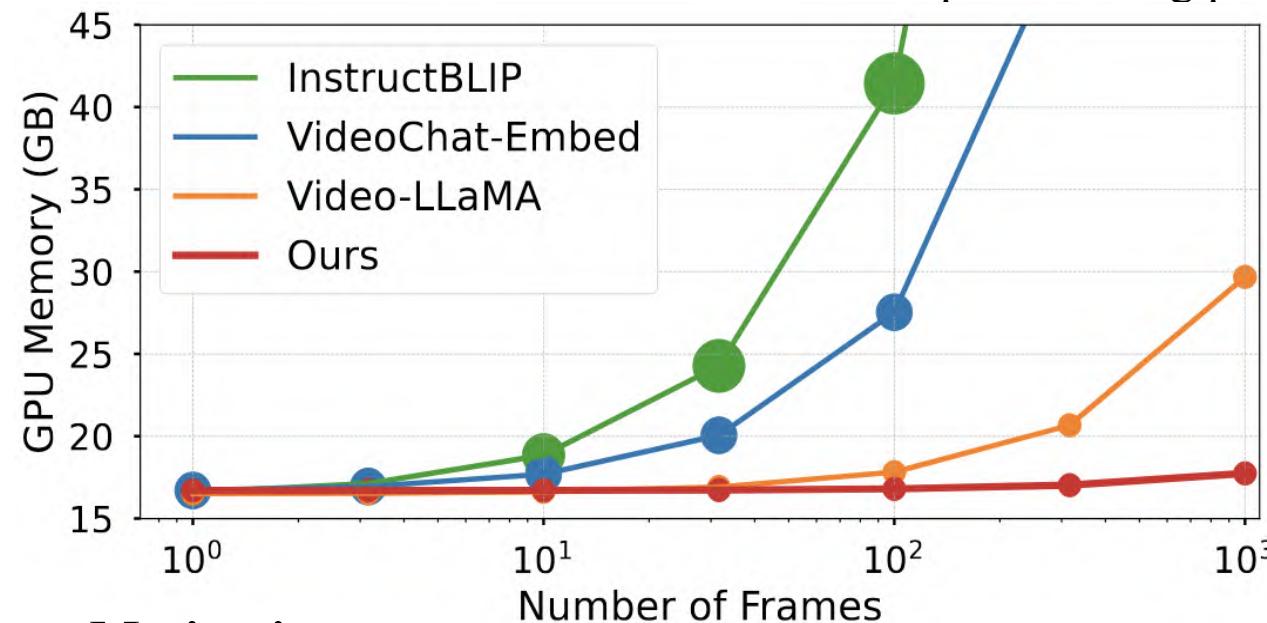
Architectures —Feature Space Memory

3.1

Architectures

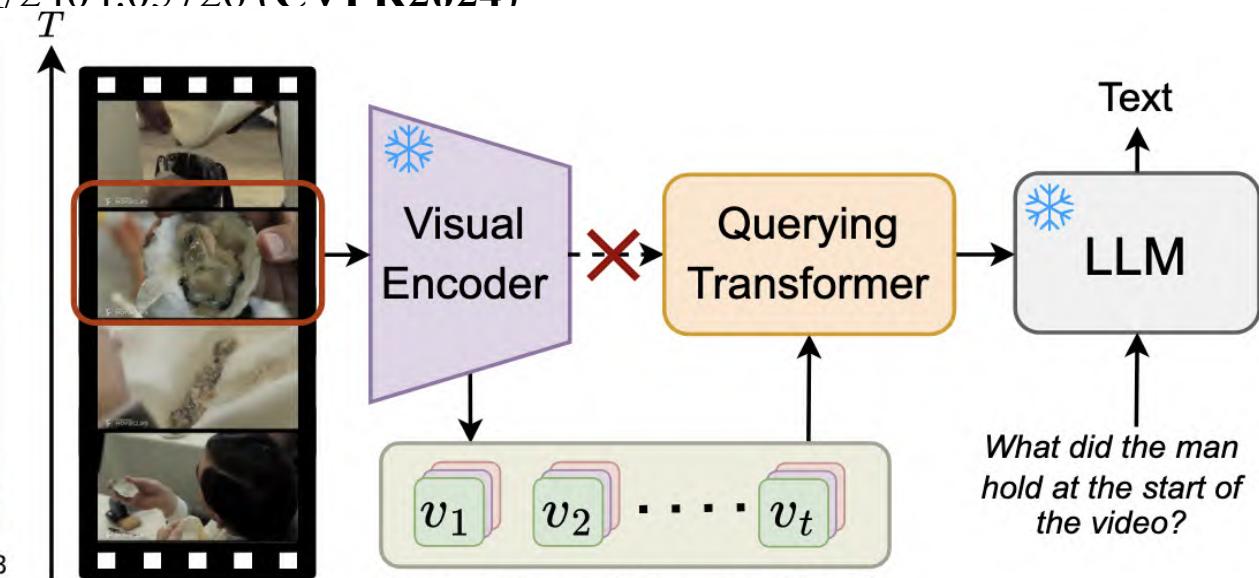
MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding

Link: <https://arxiv.org/pdf/2404.05726.pdf> (CVPR2024)



Motivation:

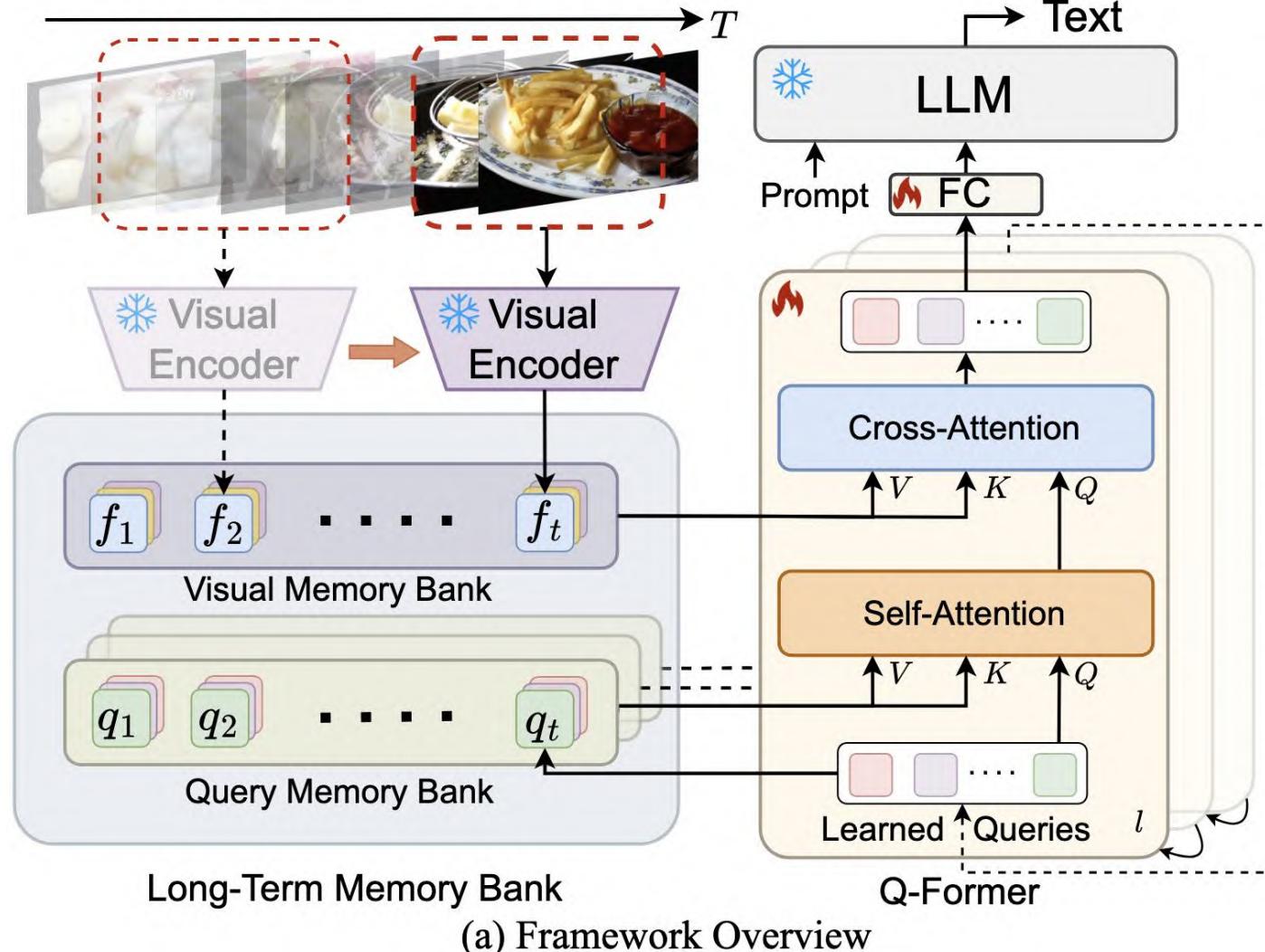
- Existing LLM-based multimodal models (e.g., Video-LLaMA, VideoChat) Limited by context length and GPU memory
- Only process a small number of frames
- Primarily suited for short video understanding



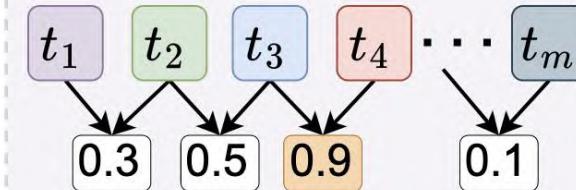
Contributions: Long-Term Memory Bank

- Proposes a novel long-term memory bank that can be seamlessly integrated into existing large multimodal models, enabling long-video modeling.
- Processes video streams in an online manner, significantly reducing GPU memory usage and effectively alleviating LLM context-length limitations.

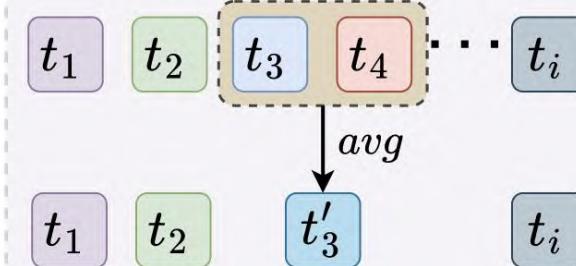
MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding



Step 1: Calculate the cosine similarities of adjacent frames



Step 2: Select top-1 similarity and average selected features



(b) Memory Bank Compression

MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding

Comparison with state-of-the-art methods on the LVU dataset: top-1 and top-2

Model	Content			Metadata			Avg
	Relation	Speak	Scene	Director	Genre	Writer	
Obj_T4mer [29]	54.8	33.2	52.9	47.7	52.7	36.3	37.8
	50.0	38.8	60.5	58.9	49.5	48.2	41.3
	50.0	38.3	66.3	55.1	55.8	47.0	43.4
	52.8	37.9	54.9	47.3	51.9	38.5	36.1
	52.5	37.3	62.8	56.1	52.7	42.3	39.2
	57.1	40.8	67.4	62.6	54.7	48.8	44.8
	67.1	<u>42.1</u>	<u>73.5</u>	<u>67.3</u>	65.4	<u>51.3</u>	<u>48.0</u>
Ours	<u>58.2</u>	44.8	80.3	74.6	<u>61.0</u>	70.4	51.9
							63.0

Comparison on the Breakfast and COIN datasets: The top-1 accuracy

Model	Breakfast	COIN
TSN [44]	-	73.4
VideoGraph [45]	69.5	-
Timeception [28]	71.3	-
GHRM [46]	75.5	-
D-Sprv. [47]	89.9	90.0
ViS4mer [32]	88.2	88.4
S5 [33]	<u>90.7</u>	<u>90.8</u>
Ours	93.0	93.2

Comparison with state-of-the-art methods on the video question answering task: Top-1 accuracy

Model	MSRVTT	MSVD	ActivityNet
JustAsk [60]	41.8	47.5	38.9
FrozenBiLM [61]	47.0	54.8	43.2
	43.5	-	44.1
	44.5	54.7	-
	43.2	56.8	-
	<u>48.0</u>	58.1	-
	47.1	55.2	47.9
	46.3	56.9	56.1
Video-LLaMA [12]	46.5	<u>58.3</u>	45.5
Ours	48.5	60.6	<u>49.8</u>

Comparison with state-of-the-art methods on the video captioning task: METEOR (M) and CIDEr (C)

Model	MSRVTT		MSVD		YouCook2	
	M	C	M	C	M	C
UniVL [68]	28.2	49.9	29.3	52.8	-	127.0
SwinBERT [69]	29.9	53.8	41.3	120.6	15.6	109.0
GIT [64]	32.9	73.9	51.1	180.2	<u>17.3</u>	<u>129.8</u>
mPLUG-2 [65]	34.9	80.3	48.4	165.8	-	-
VideoCoca [67]	-	73.2	-	-	-	128.0
Video-LLaMA	32.9	71.6	49.8	175.3	16.5	123.7
Ours	<u>33.4</u>	<u>74.6</u>	<u>51.0</u>	<u>179.1</u>	17.6	131.2

東南大學
SOUTHEAST UNIVERSITY

PART THREE

Architectures — Video Caption Memory

3.2

Architectures

VideoLucy: Deep Memory Backtracking for Long Video Understanding

Link: <https://arxiv.org/abs/2510.12422> (NeurIPS 2025)

Prior agent-based video understanding methods suffer from two key limitations

■ Modeling and inference based on a single frame

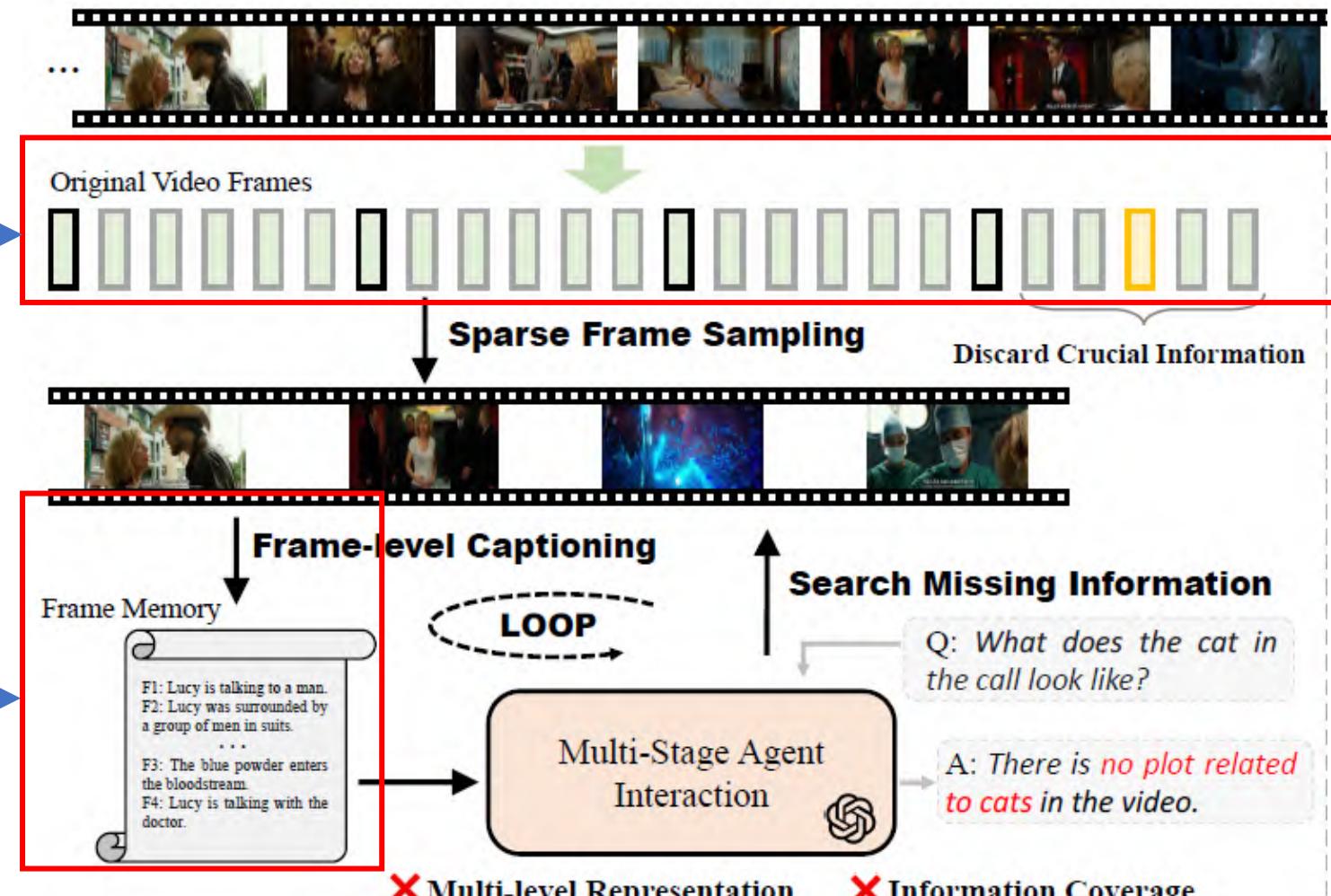
- Difficult to capture the temporal contextual information of **consecutive frames**.
- Essentially, this approach utilizes a **pre-trained captioning model** to generate **text descriptions** for each specified frame in the video
- Using a **large language model** as the core, an iterative information search loop is constructed to **obtain** keyframes related to the problem and their supplementary descriptions.

■ Sparse frame sampling strategy, To reduce the cost of generating dense frame-level subtitles, but obviously carries the risk of losing critical information.

VideoLucy: Deep Memory Backtracking for Long Video Understanding

Prior agent-based video understanding methods suffer from two key limitations

■ Sparse frame sampling strategy



■ Modeling and inference based on a single frame

(a) A Representative of Existing Video Agent-based Systems

VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

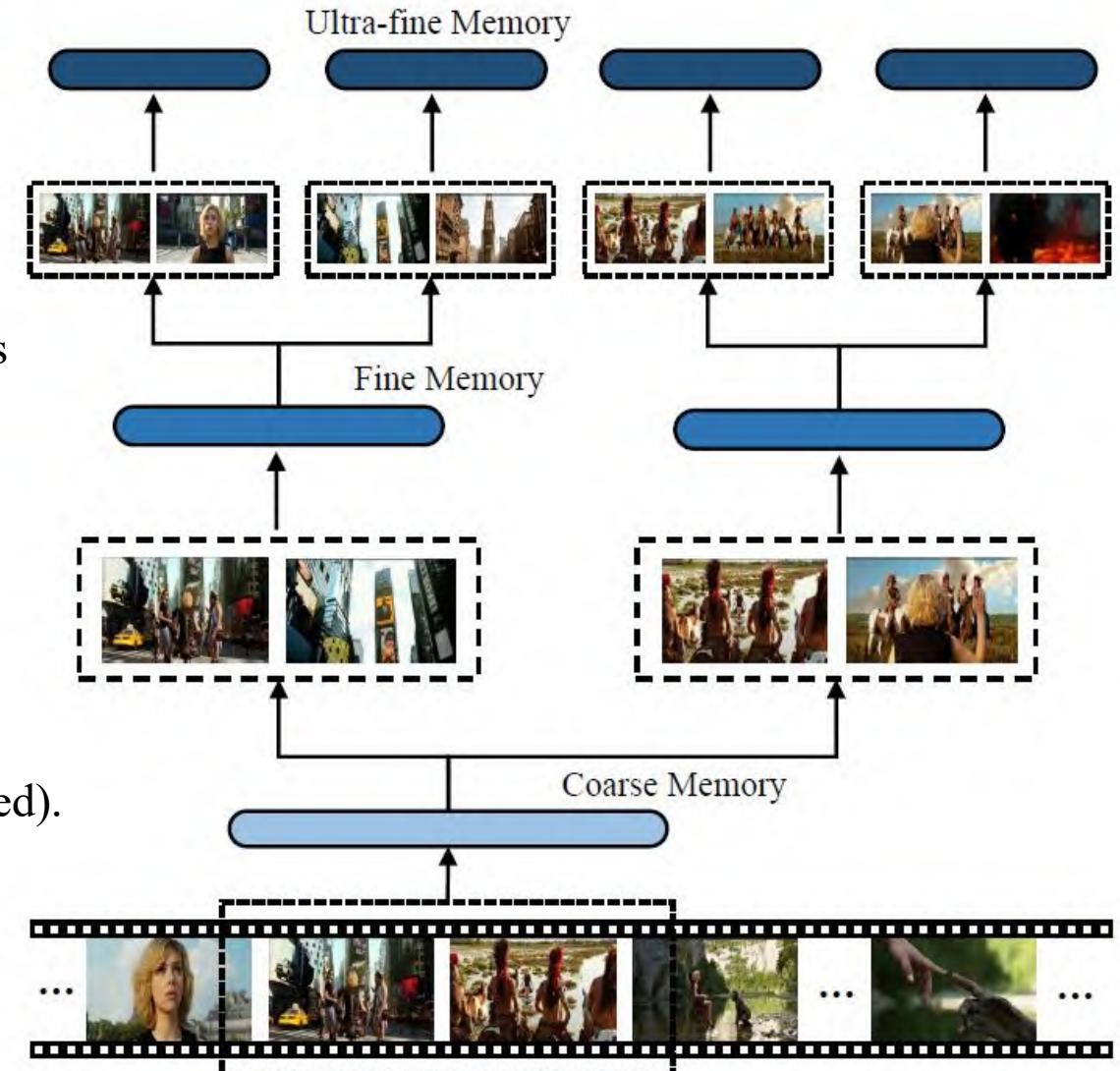
Hierarchical Memory Structure

For a video with **N frames**, it can be divided into **k non-overlapping sub-segments**, each containing N/k frames.

Then, based on the value of k , we can further divide the sub-segments into **three segments of different granularities**. MLLM can then be used to interpret these segments separately.

$$m_k = \text{VidCap}(v_k, p_k)$$

- $k=1$, understands the entire video (coarse-grained).
- $k=m$ ($1 < m < N$), understands each segment of the video (fine-grained).
- $k=N$, understands every frame of the video (ultra-fine-grained).



VideoLucy: Deep Memory Backtracking for Long Video Understanding

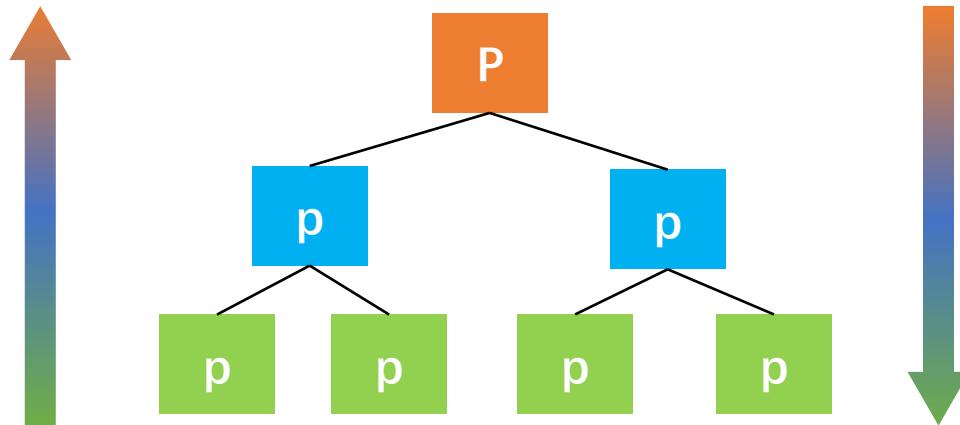
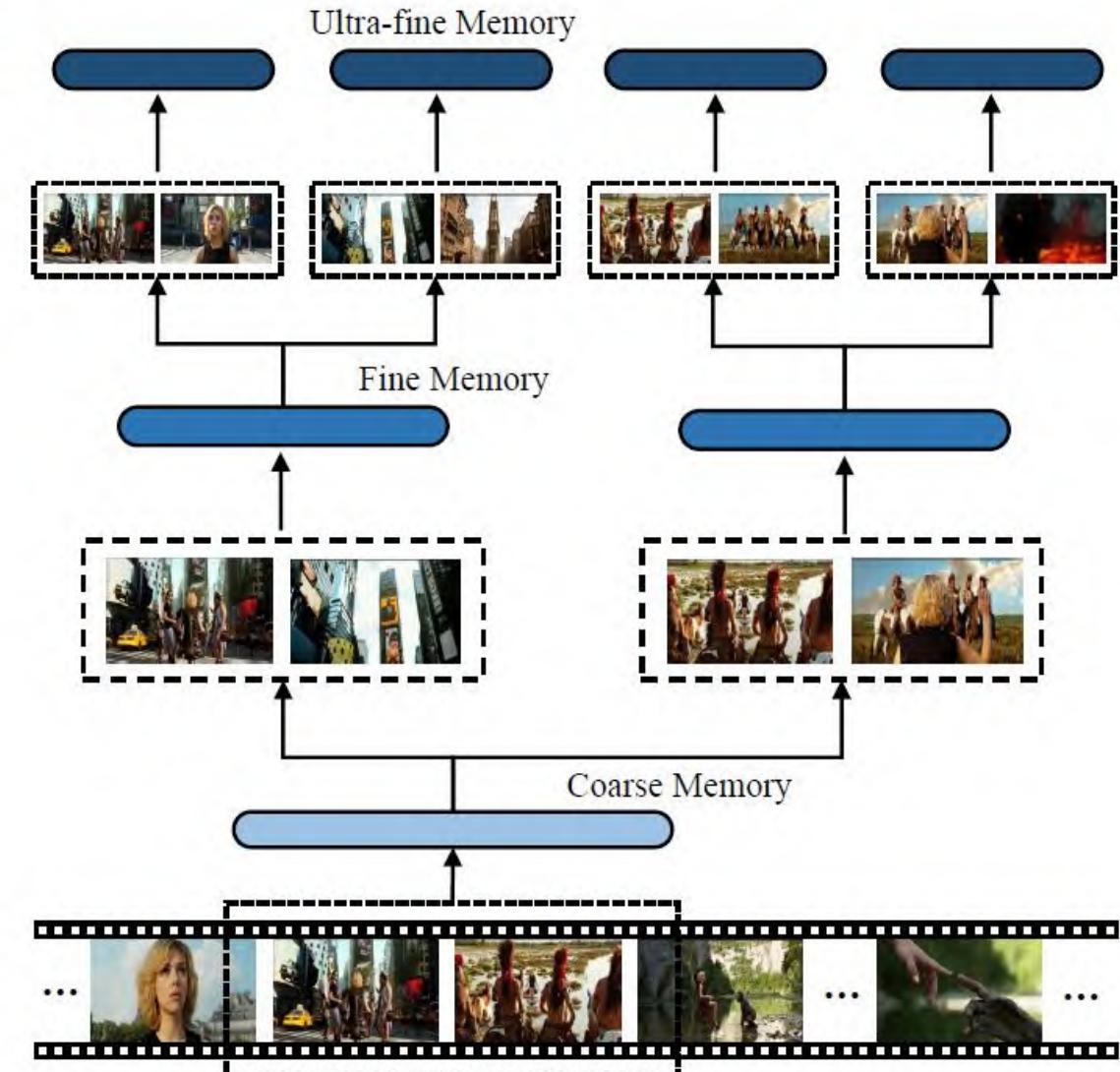
Innovation point

Hierarchical Memory Structure

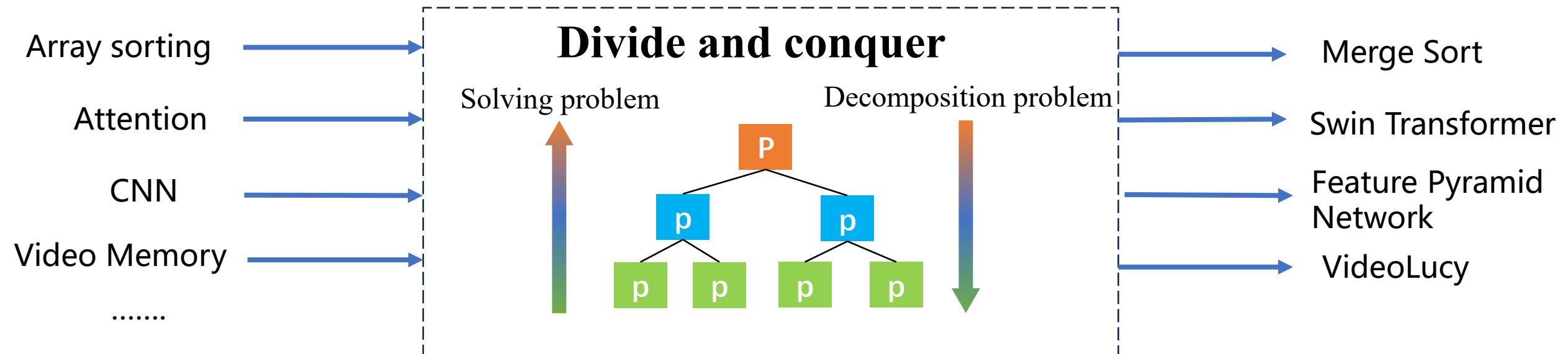
Essentially, it's the **divide-and-conquer strategy**.

For a problem P , we first break it down into multiple smaller subproblems p from top to bottom, then solve each subproblem one by one from bottom to top, and finally combine them to solve the overall problem P .

Solving problem



VideoLucy: Deep Memory Backtracking for Long Video Understanding



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

Multi-agent system design

Localization Agent

Locating video clips related to the question

Captioning Agent

Based on the input video clip and prompt, provide the caption.

Instruction Agent

Design a Prompt for Captioning Agent

Answering Agent

Answer the question based on your current exploration and memory.

Algorithm 1 The Iterative Backtracking Mechanism

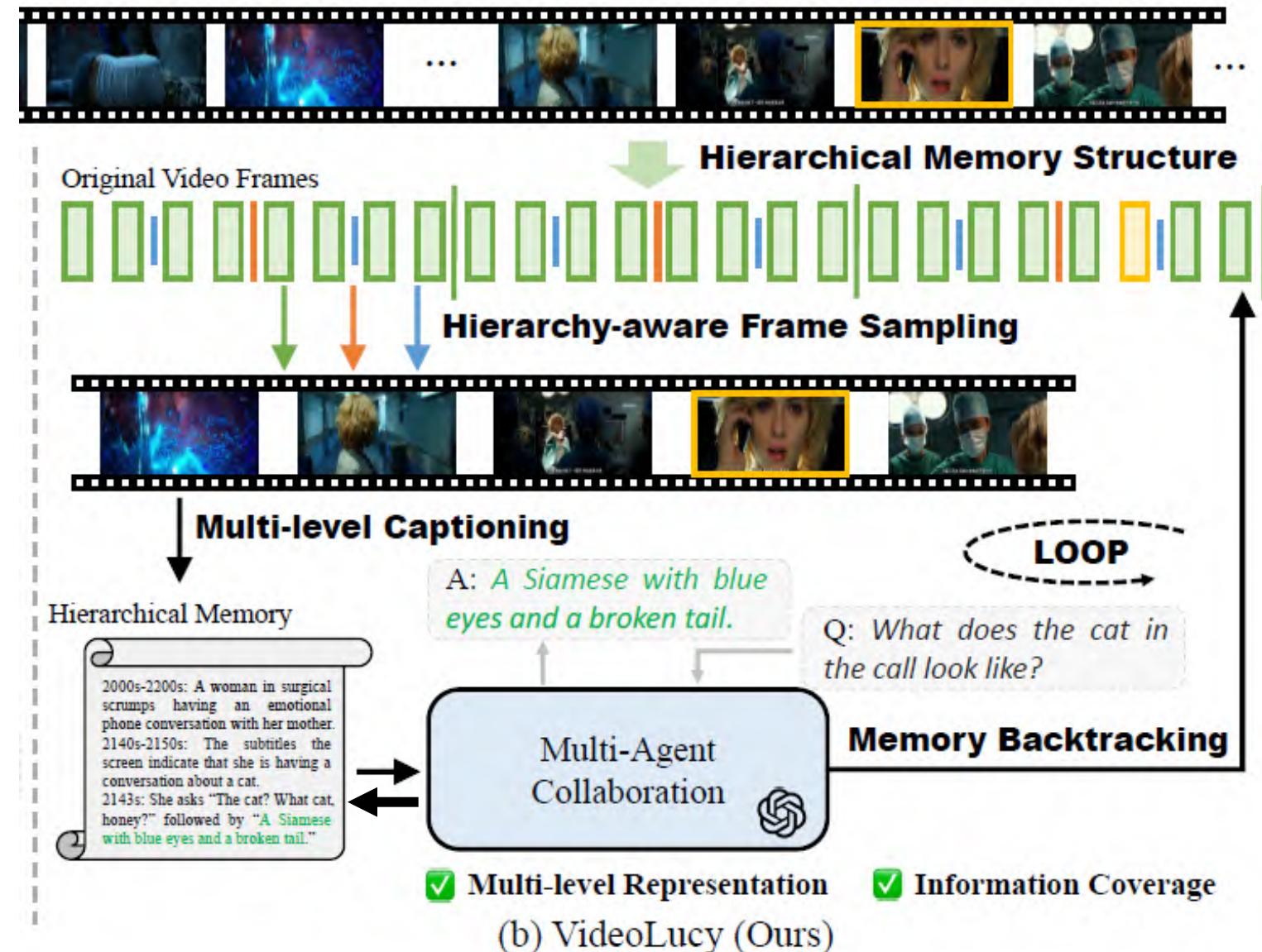
Input: The video V , question Q , captioning agent $CapAGT$, localization agent $LocAGT$, instruction agent $InsAGT$, answering agent $AnsAGT$ and the specified temporal scopes T_c, T_f, T_{uf} corresponding to coarse, fine, and ultra-fine memory.

- 1: Implement sparse coarse memory initialization to obtain an initial current memory list CM .
- 2: Initialize a relevant set of time periods $S_{rt} = \{\}$.
- 3: Obtain the response based on the current memory $R = AnsAGT(CM, Q)$.
- 4: **while** R is not confident **do**
- 5: Locate the single most question-relevant time period $t = LocAGT(CM \setminus S_{rt}, Q)$ not in S_{rt} .
- 6: Add this time period t to the relevant set S_{rt} , i.e., $S_{rt} \leftarrow S_{rt} \cup \{t\}$.
- 7: Analyze missing question-key info and provide instruction prompt $p = InsAGT(CM, Q, t)$.
- 8: Obtain the video clip V_t corresponding to this period t from the video V .
- 9: Divide V_t into short clips $\{(t^i, V_t^i)\}_{i=1}^L$ by T_d , $|t| = T_c \Rightarrow T_d = T_f, |t| = T_f \Rightarrow T_d = T_{uf}$.
- 10: Obtain the updated current-depth memory of this time period $m_c = CapAGT(V_t, p)$.
- 11: Obtain the deeper memories of this time period $\{m_d^i\}_{i=1}^L = \{CapAGT(V_t^i, p)\}_{i=1}^L$.
- 12: Update CM : $CM \leftarrow CM \cup \{(t, m_c)\} \cup \{(t^i, m_d^i) \mid i = 1, \dots, L\}$.
- 13: Obtain the response based on the updated current memory $R = AnsAGT(CM, Q)$.
- 14: **end while**

Output: The final response R with a confident answer to the question Q .

VideoLucy: Deep Memory Backtracking for Long Video Understanding

Method Overview



Limitations

1. Hyperparameter sensitivity

- the parameter K for segmenting video clips needs to be manually specified.
- While the experiments in the paper achieved SOTA results, different hyperparameters are required for different datasets to achieve the corresponding SOTA performance.

2. The reasoning expense is too high.

東南大學
SOUTHEAST UNIVERSITY

PART FOUR

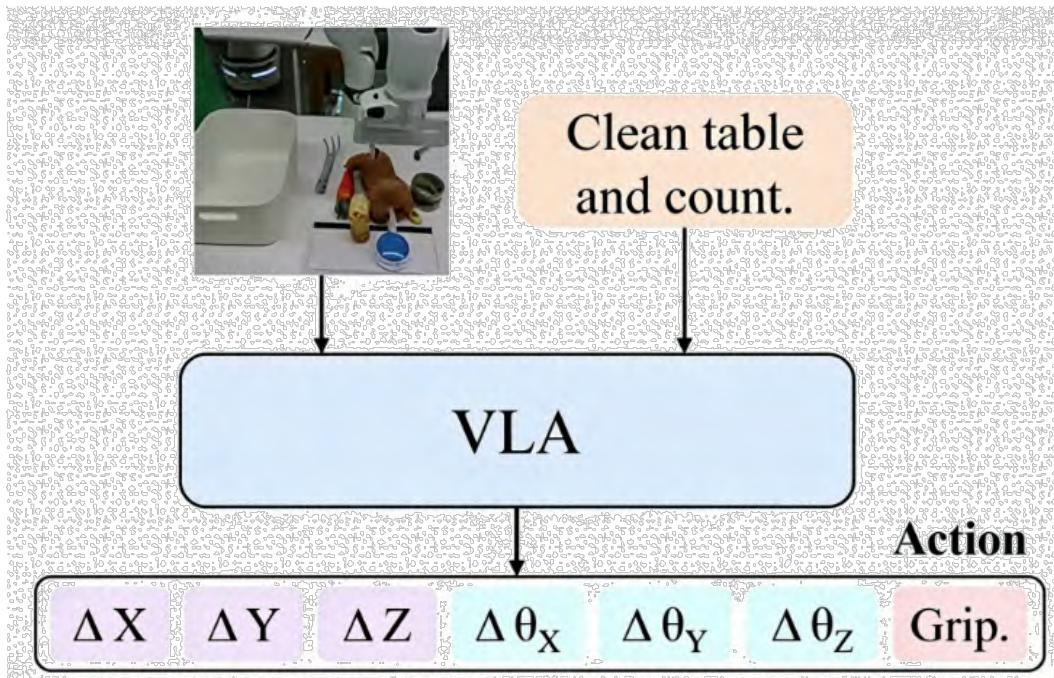
Frontier Field Integration — Application In VLA

04

Architectures

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Link: <https://arxiv.org/abs/2508.19236> (OpenReview ICLR 2026)



Physical Grounding

Mapping sensor observation and instruction into **6-DoF pose**, with physical-world properties in mind.

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Is Good Physical Grounding Enough?

Clean Table & Count

Have I pressed it before?

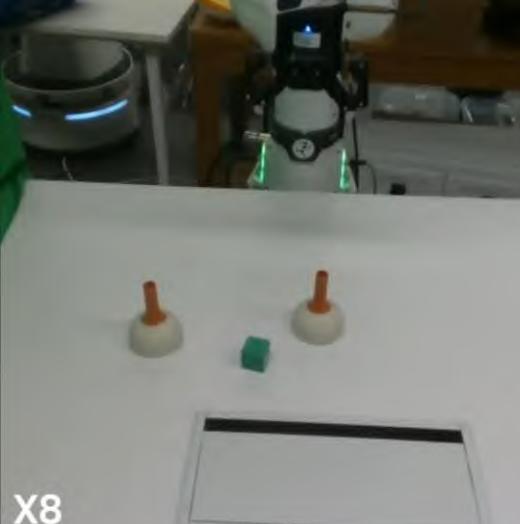
Will I press the button, or
have I just pressed it?

Miss

Repeat

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Change Food



Guess Where

Change Food

Guess Where

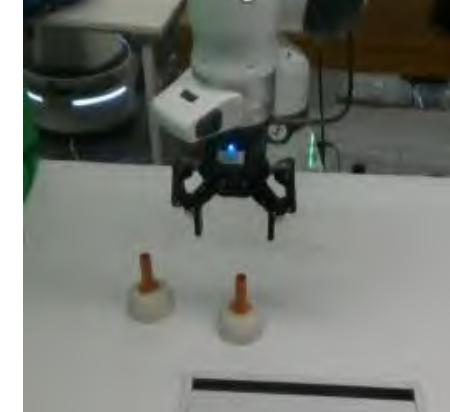
What was first placed on the plate? Did I just put down the corn, or the carrot?

Which cup is the block really under?

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Clean Table & Count

Change Food

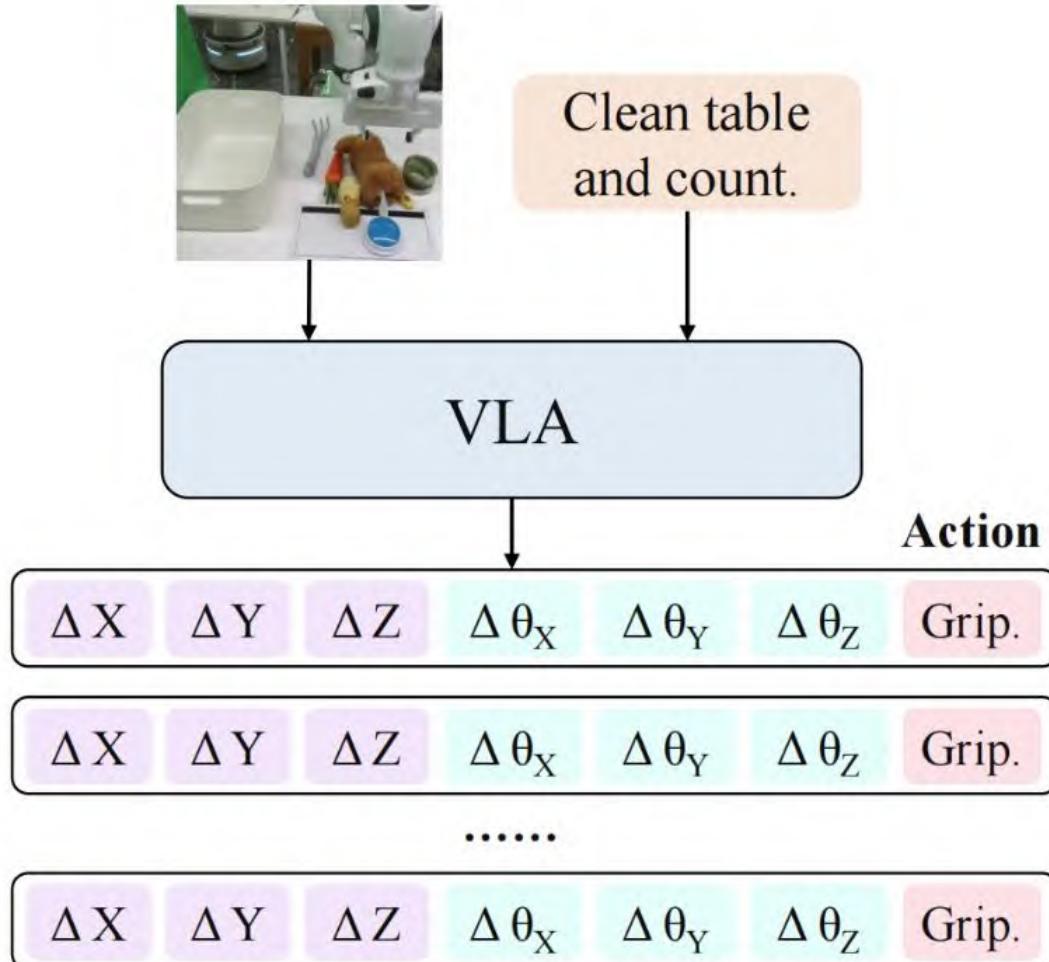
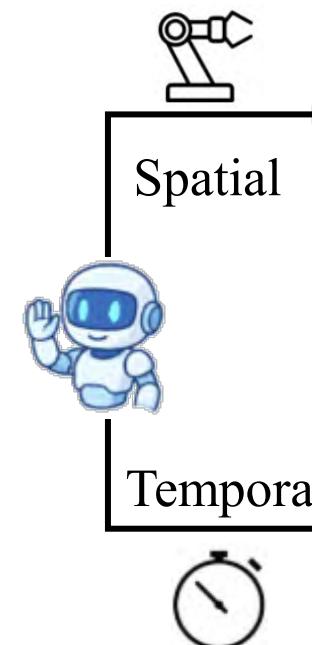


Guess Where

Robotic manipulation tasks are inherently **non-Markovian**
Current decision relies on historical state.

Mainstream VLAs (PI-0, OpenVLA, CogACT) are struggling with
temporally-dependent / long-horizon manipulation tasks.

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation



Mapping sensor observation and instruction into **6-DoF pose**, with physical-world properties in mind.

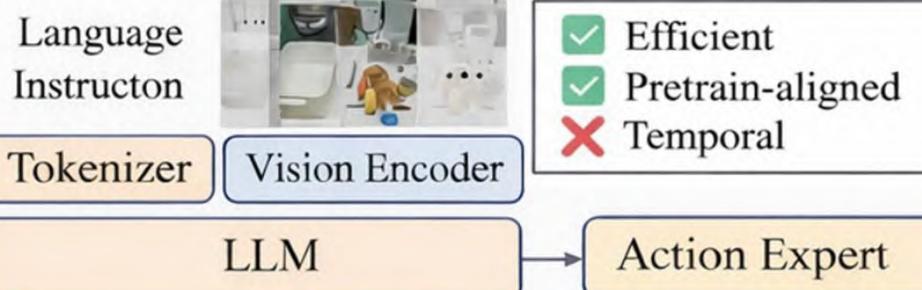
Sequential Decision-Making

Making a series of decisions based on current and historical states to achieve long-term objectives

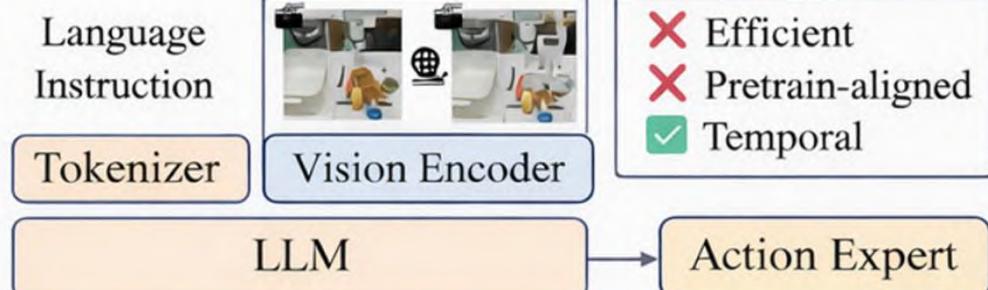
MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

How to Capture Temporal Dependencies?

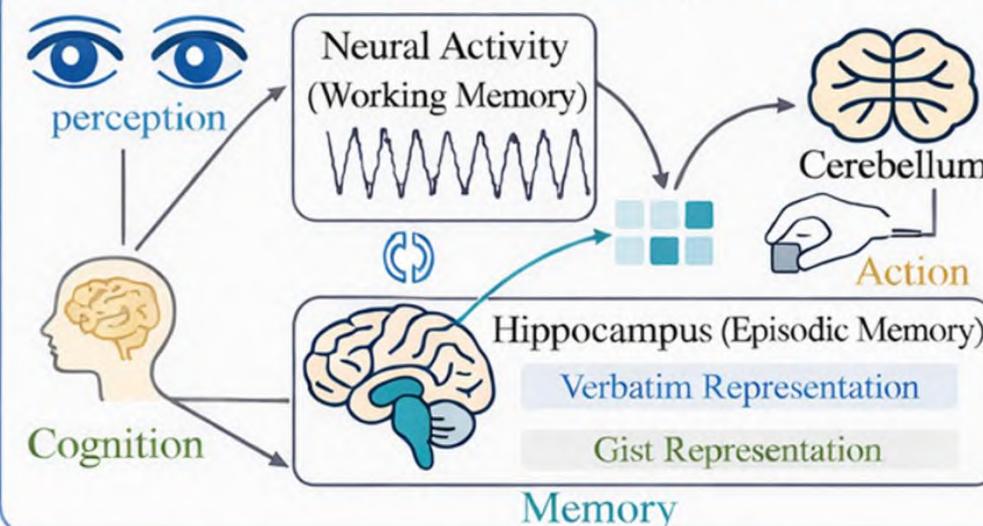
(a) Mainstream VLA (OpenVLA, PI-0, etc.)



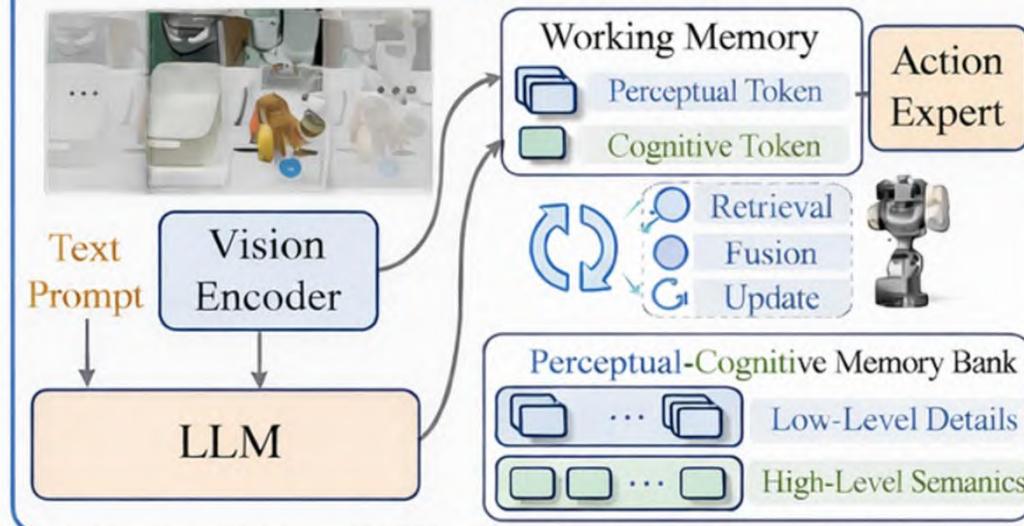
(b) Naïve Temporal VLA



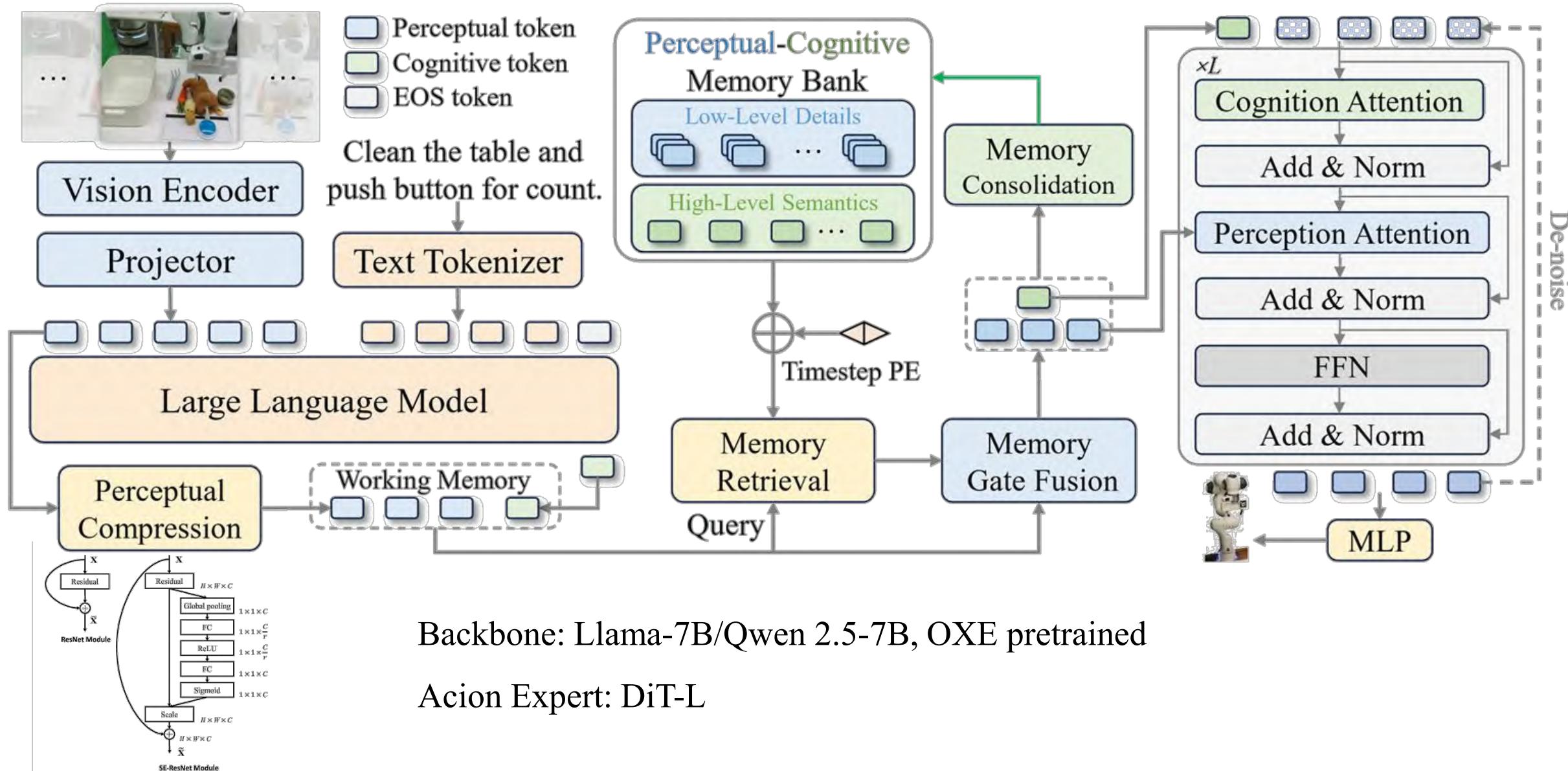
(c) Human Cognition-Memory-Action



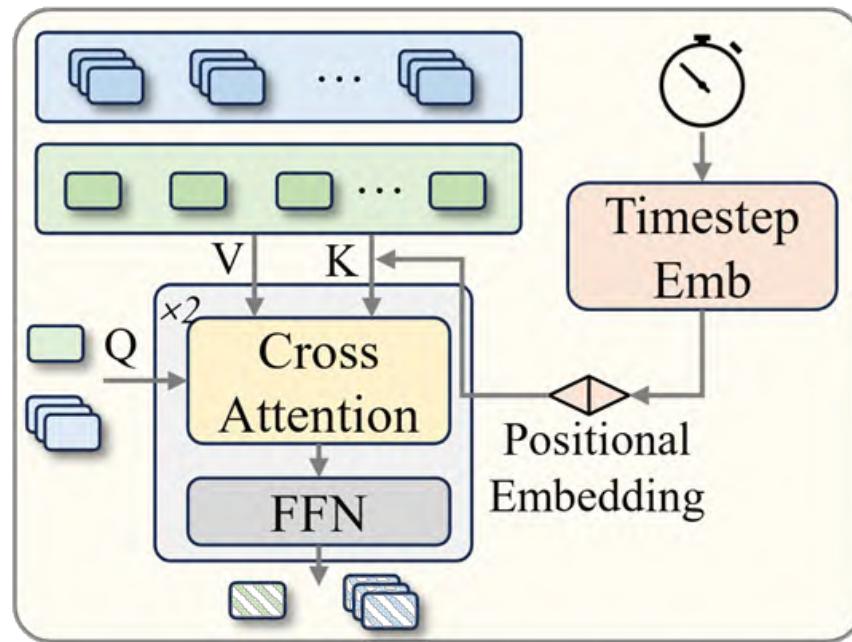
(d) MemoryVLA



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

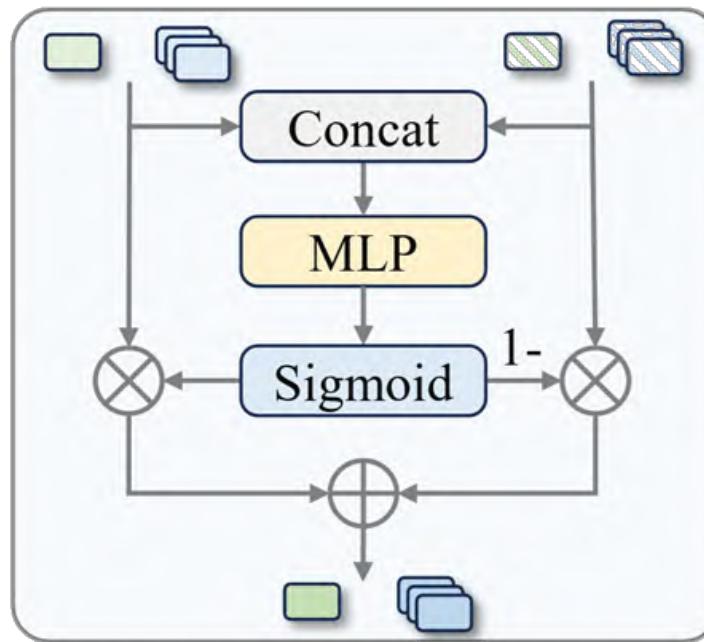


MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation



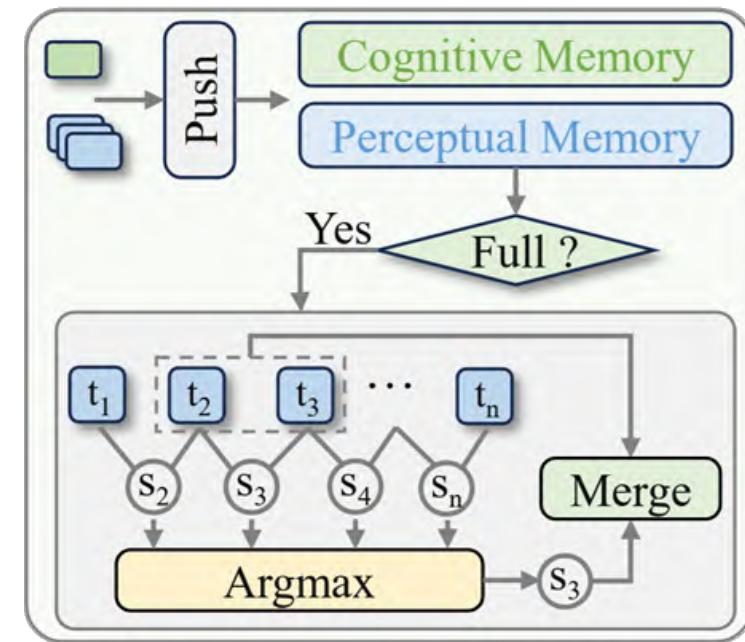
(a) Memory Retrieval

Select past info relevant to current decision



(b) Memory Gate Fusion

Adaptive fusion of past and current info

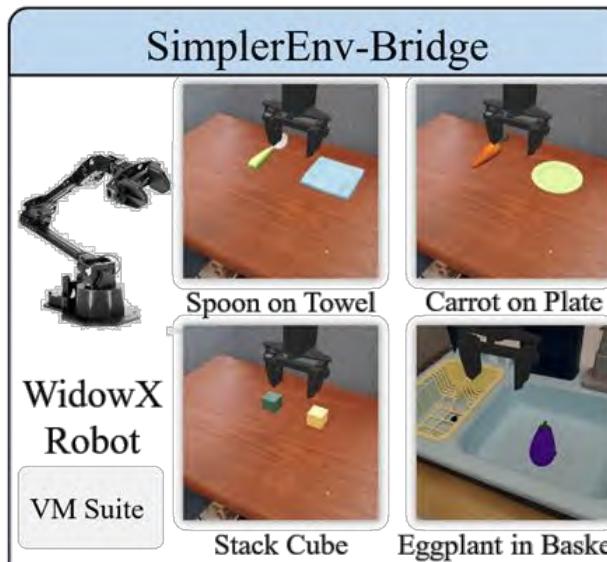
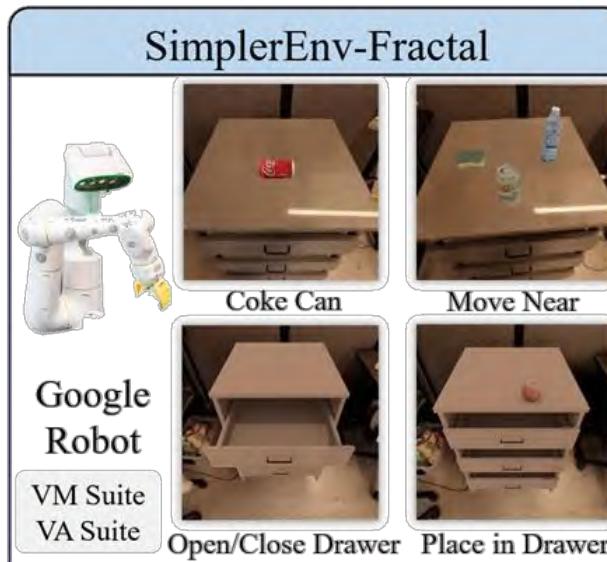
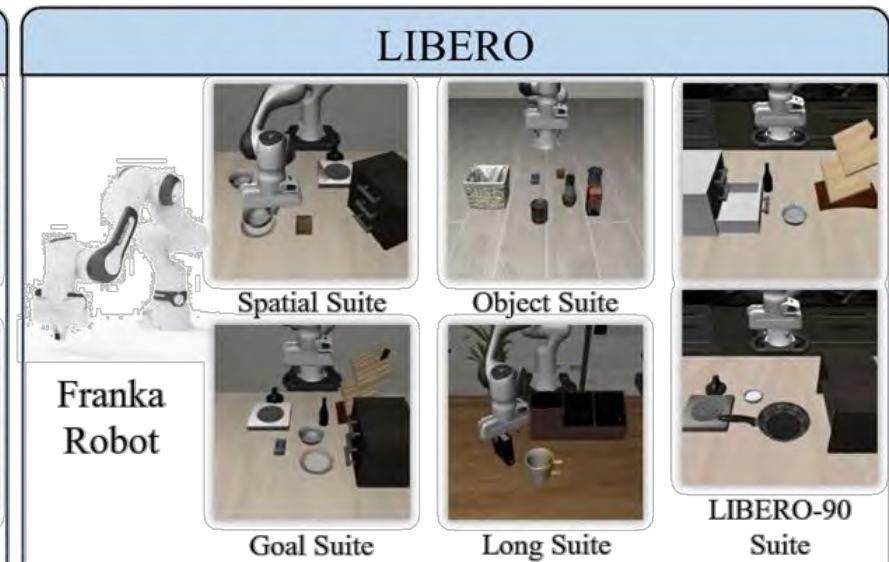
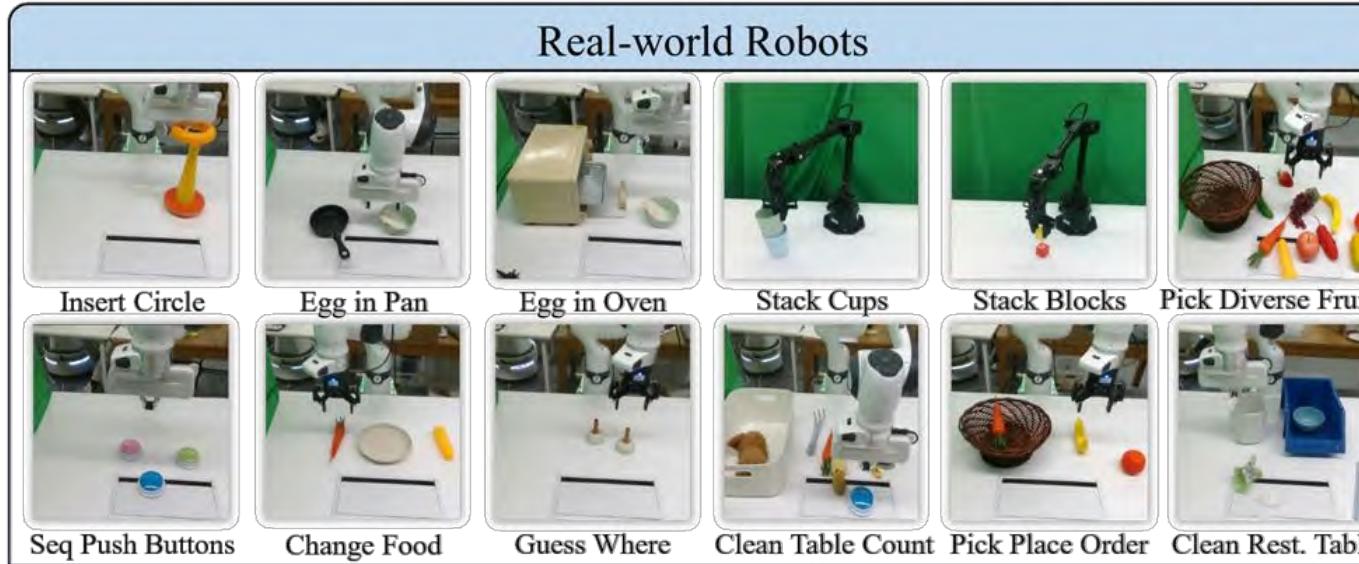
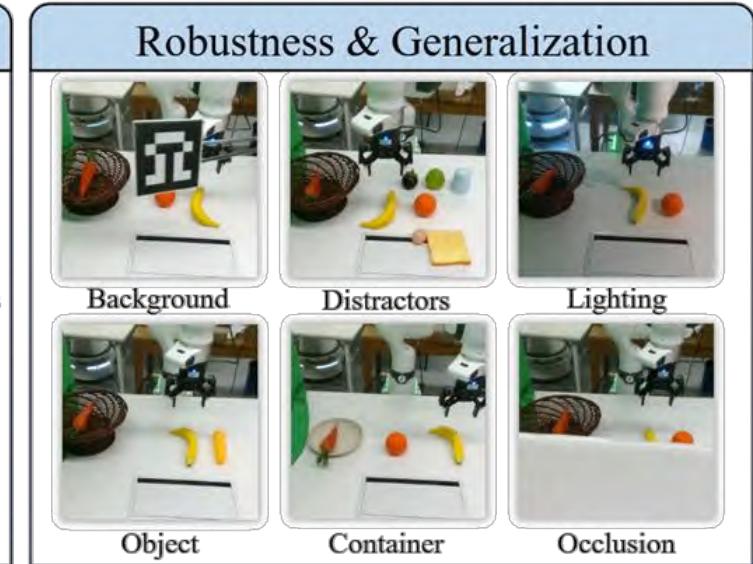


(c) Memory Consolidation

Merge nearby & similar entries for compact memory

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

3 Robots, 10 Suites, 150+ Tasks, 500+ Variations



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Method	Spoon on Towel	Carrot on Plate	Stack Cube	Eggplant in Basket	Avg. Success	Method	Spatial	Object	Goal	Long	LIBERO-90	Avg. Success
RT-1-X (O'Neill et al., 2024)	0.0	4.2	0.0	0.0	1.1	Diffusion Policy (Chi et al., 2023)	78.3	92.5	68.3	50.5	—	72.4
OpenVLA (Kim et al., 2024)	4.2	0.0	0.0	12.5	4.2	Octo (Team et al., 2024)	78.9	85.7	84.6	51.1	—	75.1
Octo-Base (Team et al., 2024)	15.8	12.5	0.0	41.7	17.5	MDT (Reuss et al., 2024)	78.5	87.5	73.5	64.8	—	76.1
TraceVLA (Zheng et al., 2024b)	12.5	16.6	16.6	65.0	27.7	UniACT (Zheng et al., 2025b)	77.0	87.0	77.0	70.0	73.0	76.8
RoboVLMs (Liu et al., 2025a)	45.8	20.8	4.2	79.2	37.5	MaIL (Jia et al., 2024)	74.3	90.1	81.8	78.6	—	83.5
SpatialVLA (Qu et al., 2025)	16.7	25.0	29.2	100.0	42.7	SpatialVLA (Qu et al., 2025)	88.2	89.9	78.6	55.5	46.2	71.7
Magma (Yang et al., 2025)	37.5	29.2	20.8	91.7	44.8	TraceVLA (Zheng et al., 2024b)	84.6	85.2	75.1	54.1	—	74.8
CogACT-Base (Li et al., 2024a)	71.7	50.8	15.0	67.5	51.3	OpenVLA (Kim et al., 2024)	84.7	88.4	79.2	53.7	73.5	75.9
π_0 -Uniform* (Black et al., 2024)	63.3	58.8	21.3	79.2	55.7	CoT-VLA (Zhao et al., 2025)	87.5	91.6	87.6	69.0	—	81.1
CogACT-Large (Li et al., 2024a)	58.3	45.8	29.2	95.8	57.3	π_0 -FAST* (Pertsch et al., 2025)	96.4	96.8	88.6	60.2	83.1	85.0
π_0 -Beta* (Black et al., 2024)	84.6	55.8	47.9	85.4	44.8	TriVLA (Liu et al., 2025c)	91.2	93.8	89.8	73.2	—	87.0
MemoryVLA (Ours)	75.0	75.0	37.5	100.0	71.9 (+14.6)	4D-VLA (Zhang et al., 2025a)	88.9	95.2	90.9	79.1	—	88.6
MemoryVLA (Ours)	98.4	98.4	96.4	93.4	95.6	CogACT (Li et al., 2024a)	97.2	98.0	90.2	88.8	92.1	93.2
MemoryVLA (Ours)	96.5 (+3.3)					π_0 * (Black et al., 2024)	96.8	98.8	95.8	85.2	—	94.2

SimplerEnv-Bridge

Method	Visual Matching (VM)					Visual Aggregation (VA)					Overall
	Coke Can	Move Near	O. / C. Drawer	Put in Drawer	Avg.	Coke Can	Move Near	O. / C. Drawer	Put in Drawer	Avg.	
Octo-Base (Team et al., 2024)	17.0	4.2	22.7	0.0	11.0	0.6	3.1	1.1	0.0	1.2	6.1
RT-1-X (O'Neill et al., 2024)	56.7	31.7	59.7	21.3	42.4	49.0	32.3	29.4	10.1	30.2	36.3
OpenVLA (Kim et al., 2024)	18.0	56.3	63.0	0.0	34.3	60.8	67.7	28.8	0.0	39.3	36.8
RoboVLMs (Liu et al., 2025a)	76.3	79.0	44.9	27.8	57.0	50.7	62.5	10.3	0.0	30.9	44.0
TraceVLA (Zheng et al., 2024b)	45.0	63.8	63.1	11.1	45.8	64.3	60.6	61.6	12.5	49.8	47.8
RT-2-X (O'Neill et al., 2024)	78.7	77.9	25.0	3.7	46.3	82.3	79.2	35.5	20.6	54.4	50.4
Magma (Yang et al., 2025)	75.0	53.0	58.9	8.3	48.8	68.6	78.5	59.0	24.0	57.5	53.2
SpatialVLA (Qu et al., 2025)	79.3	90.0	54.6	0.0	56.0	78.7	83.0	39.2	6.3	51.8	53.9
π_0 -Uniform* (Black et al., 2024)	88.0	80.3	56.0	52.2	69.1	—	—	—	—	—	—
π_0 -Beta* (Black et al., 2024)	97.9	78.7	62.3	46.6	71.4	—	—	—	—	—	—
CogACT (Li et al., 2024a)	91.3	85.0	71.8	50.9	74.8	89.6	80.8	28.3	46.6	61.3	68.1
MemoryVLA (Ours)	90.7	88.0	84.7	47.2	77.7	80.5	78.8	53.2	58.3	67.7	72.7 (+4.6)

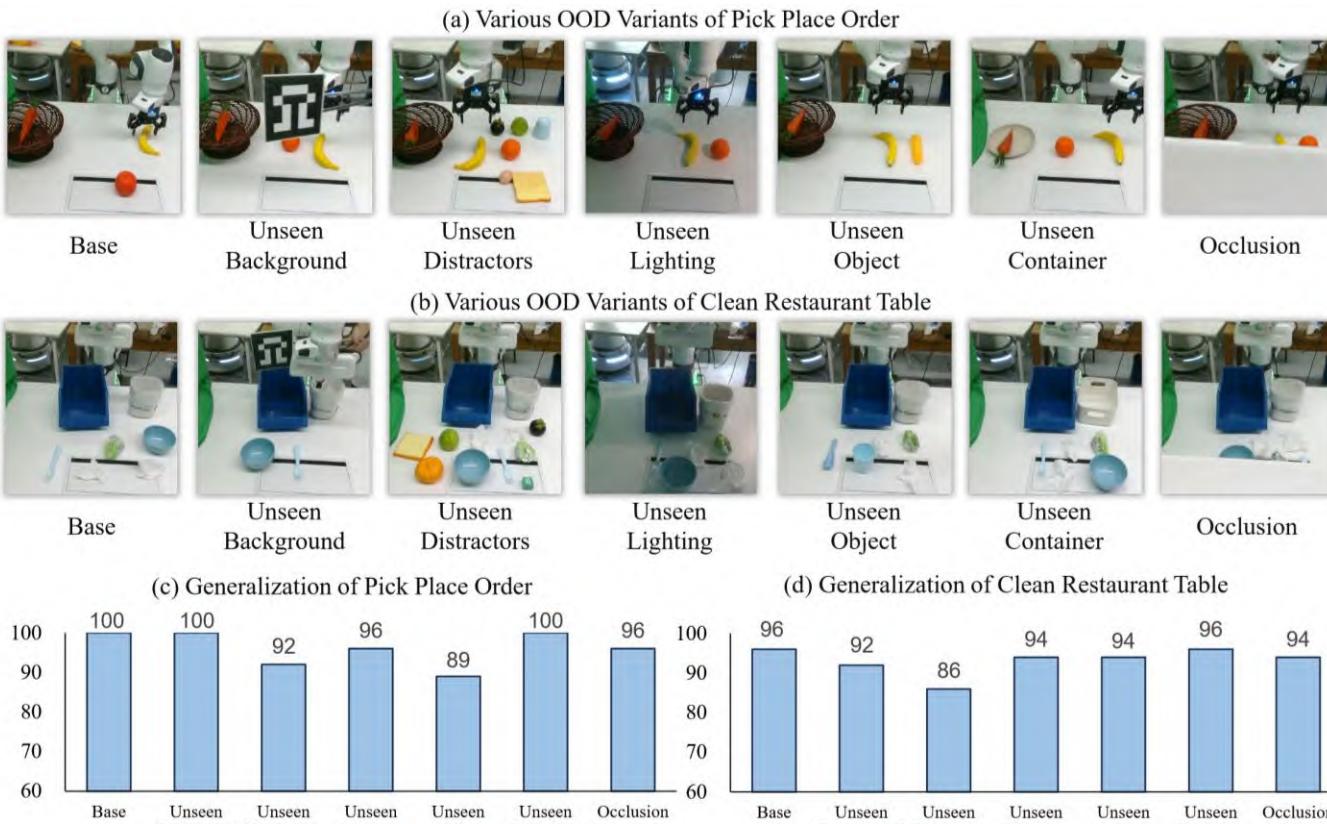
SimplerEnv-Fractal

Method	LIBERO						
	General Tasks						
Method	Insert Circle	Egg in Pan	Egg in Oven	Stack Cups	Stack Blocks	Pick Diverse Fruits	Avg. Success
OpenVLA (Kim et al., 2024)	47	27	53	40	13	4	31
π_0 (Black et al., 2024)	67	73	73	87	53	80	72
CogACT (Li et al., 2024a)	80	67	60	93	80	76	76
MemoryVLA (Ours)	87	80	80	93	87	84	85 (+9)
Long-horizon Temporal Tasks							
Method	Seq. Push Buttons	Change Food	Guess Where	Clean Table & Count	Pick Place Order	Clean Rest. Table	Avg. Success
OpenVLA (Kim et al., 2024)	6	3	0	15	27	0	9
π_0 (Black et al., 2024)	25	42	24	61	82	80	52
CogACT (Li et al., 2024a)	15	47	40	67	90	84	57
MemoryVLA (Ours)	58	85	72	84	100	96	83 (+26)

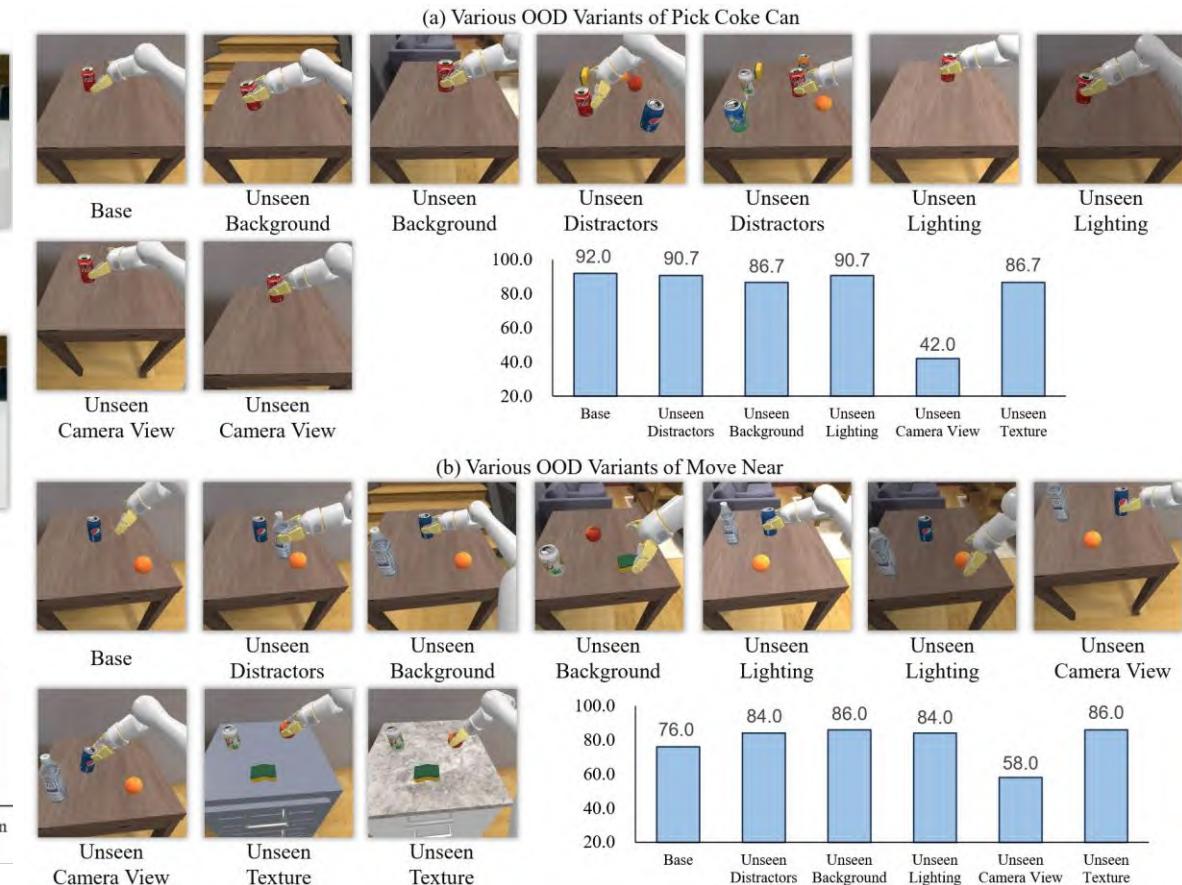
Real-World

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation

Robustness and generalization



Real-World



Simulation

Thanks for listening!

汇报人：李文卓