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PART ONE

Introduction
— Why Long Video Understanding is Hard?



Introduction

Video Understanding: Action Recognition, Event Detection, Video Question Answering, Video Summarization etc.



Introduction

Short Video Understanding: eg. MSVD-QA

Long Video Understanding: eg. Video-MME



Introduction

• Sample: Extracting keyframes or key clip from long videos → Inevitable information loss

• Hierarchical structure: model locally, then aggregate globally. → Tradeoff: Information retention  VS Complexity

Can we utilize the existing Video Transformer?

ViViT: 

• Simply use it: → Self-attention all tokens O(n2),  computationally and memory  Intolerant



Introduction

The difficulties in understanding long videos

Modeling long temporal 

dependencies is difficult

• several minutes or even hours

• traditional Transformer or RNN are 

difficult to directly capture such 

long cross-segment dependencies.

Complex multimodal information 

fusion

• Video semantics span multiple 

modalities (vision scenes, character 

dialogue, audio cues)

• Required cross-modal alignment 

and fusion capabilities.

Information redundancy and 

semantic sparsity

• large number of frames lacking 

effective information and key 

events being sparsely distributed

• core challenge: how to filter and 

focus on important segments.

Event-level understanding and 

Computational efficiency

• Event-level action, causal, and intent 

reasoning required

• Global modeling over tens of thousands 

of frames is computationally expensive 

which limits the direct use of global 

attention methods.

Remember longer and more 
accurately
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PART TWO

Problem Definition
— What Does “Learning to Remember” Mean?



Problem Definition

External memory  eg. Memory Bank, Key-Value Memory: Explicitly store, update, and retrieve features

Internal memory eg. RNN hidden states, Transformer cache: Implicitly maintain state



Problem Definition

Key points of memory mechanism

Inputs：Long video sequence + multimodal signal (frames, audio, subtitles)

Goal: Learn the most useful information summary within a limited context window

• Selective encoding（哪些片段值得记？）
• Efficient storage（如何组织记忆？）
• Dynamic retrieval（如何在问答/推理中召回？）

The model needs to have:



Problem Definition

Role of Memory Mechanisms in Long Videos

Short-term retention & context 

continuity:

• Preserves key information over 

seconds to minutes, maintaining 

semantic coherence.

• Avoid Catastrophic forgetting 

over time.

Long-term integration & global reasoning

• Integrates events across long time spans to 

capture global narrative and causal 

structure.

• Helping the model capture the global 

narrative structure and causal relationships

Redundancy filtering & key 

event selection

• Selectively stores key events

• Reducing computation on 

irrelevant segments.

• Improve efficiency and 

robustness

Cross-modal alignment & semantic fusion

• Serves as a shared space to align and fuse 

visual, textual, and audio cues at the event 

level.

• Facilitate the model's multimodal 

understanding at the event level.
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PART THREE

Architectures
— Representative Multimodal Memory Designs



3.1

PART THREE

Architectures
—Feature Space Memory



Architectures

MA-LMM: Memory-Augmented Large Multimodal Model 

for Long-Term Video Understanding
Link: https://arxiv.org/pdf/2404.05726 (CVPR2024)

Contributions: 
• Proposes a novel long-term memory bank that can be 

seamlessly integrated into existing large multimodal 

models, enabling long-video modeling.

• Processes video streams in an online manner, 

significantly reducing GPU memory usage and effectively 

alleviating LLM context-length limitations.

Motivation:
• Existing LLM-based multimodal models (e.g., 

Video-LLaMA, VideoChat) Limited by context 

length and GPU memory

• Only process a small number of frames

• Primarily suited for short video understanding



MA-LMM: Memory-Augmented Large Multimodal Model 

for Long-Term Video Understanding



Comparison with 

state-of-the-art 

methods on the 

video question 

answering task:

Top-1 accuracy 

Comparison 

on the 

Breakfast 

and COIN 

datasets:

The top-1 

accuracy 

Comparison 

with state-of-

the-art 

methods on 

the LVU 

dataset: 

top-1 and 

top-2

MA-LMM: Memory-Augmented Large Multimodal Model 

for Long-Term Video Understanding

Comparison 

with state-of-

the-art methods  

on the video 

captioning task: 

METEOR (M) 

and CIDEr (C)
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PART THREE

Architectures
— Video Caption Memory



Architectures

VideoLucy: Deep Memory Backtracking for Long Video Understanding
Link: https://arxiv.org/abs/2510.12422  (NeurIPS 2025)

Prior agent-based video understanding methods suffer from two key limitations

◼ Modeling and inference based on a single frame

 Difficult to capture the temporal contextual information of consecutive frames. 

 Essentially, this approach utilizes a pre-trained captioning model to generate text descriptions for each 

specified frame in the video

 Using a large language model as the core, an iterative information search loop is constructed to obtain

keyframes related to the problem and their supplementary descriptions.

◼ Sparse frame sampling strategy, To reduce the cost of generating dense frame-level subtitles, but obviously 

carries the risk of losing critical information.



Prior agent-based video understanding methods suffer from two key limitations

◼ Sparse frame sampling strategy

◼ Modeling and inference based on 

a single frame

VideoLucy: Deep Memory Backtracking for Long Video Understanding



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

Hierarchical Memory Structure

For a video with N frames, it can be divided into k non-overlapping 

sub-segments, each containing N/k frames.

Then, based on the value of k, we can further divide the sub-segments 

into three segments of different granularities. MLLM can then be 

used to interpret these segments separately.

𝑚𝑘 = 𝑉𝑖𝑑𝐶𝑎𝑝 𝑣𝑘 , 𝑝𝑘

• k=1, understands the entire video (coarse-grained).

• k=m (1<m<N), understands each segment of the video (fine-grained).

• k=N, understands every frame of the video (ultra-fine-grained).



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

Hierarchical Memory Structure

Essentially, it's the divide-and-conquer strategy. 

For a problem P, we first break it down into multiple smaller 

subproblems p from top to bottom, then solve each 

subproblem one by one from bottom to top, and finally 

combine them to solve the overall problem P.

p

p

P

p p p

p

Solving problem Decomposition problem



VideoLucy: Deep Memory Backtracking for Long Video Understanding

p

p

P

p p p

p

Solving problem Decomposition problem

Divide and conquerArray sorting

Attention

Video Memory

…….

CNN

Merge Sort

Swin Transformer

Feature Pyramid 
Network

VideoLucy



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Multi-agent system design

Localization Agent

Locating video clips related to the 

question

Captioning Agent

Based on the input video clip and 

prompt, provide the caption.

Instruction Agent

Design a Prompt for Captioning Agent

Answering Agent

Answer the question based on your 

current exploration and memory.

Innovation point



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Method Overview



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Limitations

1. Hyperparameter sensitivity

• the parameter K for segmenting video clips needs to be manually specified. 

• While the experiments in the paper achieved SOTA results, different hyperparameters are 

required for different datasets to achieve the corresponding SOTA performance.

2. The reasoning expense is too high.
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PART FOUR

Frontier Field Integration
— Application In VLA



Architectures

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models 

for  Robotic Manipulation
Link: https://arxiv.org/abs/2508.19236  (OpenReview ICLR 2026)

Physical Grounding
Mapping sensor observation and instruction into 6-DoF pose, 

with physical-world properties in mind.



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation

Is Good Physical Grounding Enough?

Miss

Repeat

Have I pressed it before?

Will I press the button, or 

have I just pressed it?Clean Table & Count



What was first placed on 

the plate? Did l just put

down the corn, or the 

carrot?

Which cup is the block 

really under?

Guess Where

Change Food

Guess Where

Change Food

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation



Robotic manipulation tasks are inherently non-Markovian 

Current decision relies on historical state.

Mainstream VLAs (PI-0, OpenVLA, CogACT) are struggling with 

temporally-dependent / long-horizon manipulation tasks.

Guess WhereChange FoodClean Table & Count

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation



Sequential Decision-Making
Making a series of decisions based on 

current and historical states to achieve 

long-term objectives

Physical Grounding
Mapping sensor observation and instruction 

into 6-DoF pose, with physical-world 

properties in mind.
Spatial

Temporal

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation



How to Capture Temporal Dependencies?

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation



Backbone: Llama-7B/Qwen 2.5-7B, OXE pretrained

Acion Expert: DiT-L

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation



Adaptive fusion  of  past  and 

current info

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation

Select past info relevant to current 

decision

Merge nearby & similar entries 

for compact memory



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation

SimplerEnv-Fractal

SimplerEnv-Bridge LIBERO

Real-World



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action 

Models for  Robotic Manipulation

Robustness and generalization

Real-World Simulation



Thanks for listening!

汇报人：李文卓
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