Learning to Remember:

Exploring Multimodal Memory
Mechanisms in Long Video
Understanding

CIRA: =XHE



%t%k‘{%

SOUTHEAST UNIVERSITY

\'q
\'q
g
©

Introduction
— Why Long Video Understanding is Hard?

Problem Definition
— What Does “Learning to Remember” Mean?

Architectures
— Representative Multimodal Memory Designs

Frontier Field Integration
— Application in VLA




%t%k‘{%

SOUTHEAST UNIVERSITY

Introduction

— Why Long Video Understanding is Hard? O 1




Introduction

Video Understanding: Action Recognition, Event Detection, Video Question Answering, Video Summarization etc.



Introduction

Short Video Understanding: eg. MSVD-QA

Long Video Understanding: eg. Video-MME



Introduction

Can we utilize the existing Video Transformer?

ViViT:

« Simply use it: — Self-attention all tokens O(n?), computationally and memory Intolerant

* Sample: Extracting keyframes or key clip from long videos — Inevitable information loss

=)

* Hierarchical structure: model locally, then aggregate globally. — Tradeoff: Information retention VS Complexity



Introduction

The difficulties in understanding long videos

Modeling long temporal

dependencies is difficult

* several minutes or even hours

* traditional Transformer or RNN are
difficult to directly capture such
long cross-segment dependencies.

Information redundancy and

semantic sparsity

* large number of frames lacking
effective information and key
events being sparsely distributed

e core challenge: how to filter and
focus on important segments.

Remember longer and more
accurately

Complex multimodal information

fusion

* Video semantics span multiple
modalities (vision scenes, character
dialogue, audio cues)

* Required cross-modal alignment
and fusion capabilities.

Event-level understanding and

Computational efficiency

« Event-level action, causal, and intent
reasoning required

* Global modeling over tens of thousands
of frames is computationally expensive
which limits the direct use of global
attention methods.
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Problem Definition

Internal memory eg. RNN hidden states, Transformer cache: Implicitly maintain state

External memory eg. Memory Bank, Key-Value Memory: Explicitly store, update, and retrieve features



Problem Definition

Key points of memory mechanism

Inputs: Long video sequence + multimodal signal (frames, audio, subtitles)

Goal: Learn the most useful information summary within a limited context window

« Selective encoding (HfLe FER{EHIL? )
The model needs to have:  Efficient storage (Z0{a/2HZRIi21Z? )
* Dynamic retrieval (Z0{e/7E o) &/3EIEH Z[E]7 )




Problem Definition

Role of Memory Mechanisms in Long Videos

Short-term retention & context Long-term integration & global reasoning
continuity: » Integrates events across long time spans to
* Preserves key information over capture global narrative and causal
seconds to minutes, maintaining structure.
semantic coherence. * Helping the model capture the global
* Avoid Catastrophic forgetting narrative structure and causal relationships
over time.
Redundancy filtering & key Cross-modal alignment & semantic fusion
event selection * Serves as a shared space to align and fuse
* Selectively stores key events visual, textual, and audio cues at the event
* Reducing computation on level.
irrelevant segments. * Facilitate the model's multimodal
* Improve efficiency and understanding at the event level.

robustness
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Architectures

MA-LMM: Memory-Augmented Large Multimodal Model

for Long-Term Video Understanding
Link: https://arxiv.org/pdf/2404.05726 (CVPR2024)

Motivation:

Existing LLM-based multimodal models (e.g.,
Video-LLaMA, VideoChat) Limited by context
length and GPU memory

Only process a small number of frames
Primarily suited for short video understanding

Contributions:

Proposes a novel long-term memory bank that can be
seamlessly integrated into existing large multimodal
models, enabling long-video modeling.

Processes video streams in an online manner,
significantly reducing GPU memory usage and effectively
alleviating LLM context-length limitations.



MA-LMM: Memory-Augmented Large Multimodal Model
for Long-Term Video Understanding




MA-LMM: Memory-Augmented Large Multimodal Model

for Long-Term Video Understanding
I EEEEEEEEEEEEEEEEEEEEEEE—E—————————————————

Comparison o
with state-of- p
the-art on the
methods on Breakfast
and COIN
glet LVtI-I datasets:
o1 ar The top-1
top-1 and
top-2 accuracy

Comparison with
state-of-the-art
methods on the
video question
answering task:

Top-1 accuracy

Comparison
with state-of-
the-art methods
on the video

captioning task:

METEOR (M)
and CIDEr (C)
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Architectures

VideoLucy: Deep Memory Backtracking for Long Video Understanding
Link: https://arxiv.org/abs/2510.12422 (NeurlIPS 2025)

Prior agent-based video understanding methods suffer from two key limitations

B Modeling and inference based on a single frame
O Difficult to capture the temporal contextual information of consecutive frames.
O Essentially, this approach utilizes a pre-trained captioning model to generate text descriptions for each
specified frame in the video
O Using a large language model as the core, an iterative information search loop is constructed to obtain
keyframes related to the problem and their supplementary descriptions.
B Sparse frame sampling strategy, To reduce the cost of generating dense frame-level subtitles, but obviously

carries the risk of losing critical information.



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Prior agent-based video understanding methods suffer from two key limitations

B Sparse frame sampling strategy —=——————p

B Modeling and inference based on =)

a single frame




VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

Hierarchical Memory Structure

For a video with N frames, it can be divided into k non-overlapping
sub-segments, each containing N/k frames.

Then, based on the value of k, we can further divide the sub-segments
into three segments of different granularities. MLLM can then be
used to interpret these segments separately.

my, = VidCap(vy, py)
* k=1, understands the entire video (coarse-grained).

* k=m (I<m<N), understands each segment of the video (fine-grained).
* k=N, understands every frame of the video (ultra-fine-grained).



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

Hierarchical Memory Structure

Essentially, it's the divide-and-conquer strategy.

For a problem P, we first break it down into multiple smaller
subproblems p from top to bottom, then solve each
subproblem one by one from bottom to top, and finally
combine them to solve the overall problem P.

Solving problem Decomposition problem

| e |



VideoLucy: Deep Memory Backtracking for Long Video Understanding
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VideoLucy: Deep Memory Backtracking for Long Video Understanding

Innovation point

Multi-agent system design

Localization Agent
Locating video clips related to the
question

Captioning Agent
Based on the input video clip and
prompt, provide the caption.

Instruction Agent
Design a Prompt for Captioning Agent

Answering Agent
Answer the question based on your
current exploration and memory.



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Method Overview



VideoLucy: Deep Memory Backtracking for Long Video Understanding

Limitations

1. Hyperparameter sensitivity

* the parameter K for segmenting video clips needs to be manually specified.

* While the experiments 1n the paper achieved SOTA results, different hyperparameters are
required for different datasets to achieve the corresponding SOTA performance.

2. The reasoning expense is too high.
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Architectures

MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models

for Robotic Manipulation
Link: https://arxiv.org/abs/2508.19236 (OpenReview ICLR 2026)

Physical Grounding
Mapping sensor observation and instruction into 6-DoF pose,
with physical-world properties in mind.



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

Is Good Physical Grounding Enough?

Miss

Have I pressed it before?

Will I press the button, or Repeat
Clean Table & Count have I just pressed 1t?



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

What was first placed on
the plate? Did 1 just put
down the corn, or the
carrot?

Change Food Change Food

Which cup is the block
really under?

Guess Where Guess Where



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

Clean Table & Count Change Food Guess Where

Robotic manipulation tasks are inherently non-Markovian

Current decision relies on historical state.

Mainstream VLAs (PI-0, OpenVLA, CogACT) are struggling with
temporally-dependent / long-horizon manipulation tasks.



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

Physical Grounding

, Mapping sensor observation and instruction
into 6-DoF pose, with physical-world
properties in mind.

Spatial

Sequential Decision-Making
Temporal Making a series of decisions based on
~ current and historical states to achieve
long-term objectives




MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

How to Capture Temporal Dependencies?



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

Backbone: Llama-7B/Qwen 2.5-7B, OXE pretrained
Acion Expert: DiT-L



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

Select past info relevant to current Adaptive fusion of past and Merge nearby & similar entries

. . for compact memo
decision current info P Iy



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation




MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

SimplerEnv-Bridge LIBERO

SimplerEnv-Fractal Real-World



MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action
Models for Robotic Manipulation

Robustness and generalization

Real-World Simulation
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